Structural Biology Core
结构生物学核心
基本信息
- 批准号:10513867
- 负责人:
- 金额:$ 128.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAccelerationBinding ProteinsBinding SitesCollaborationsCrystallizationCrystallographyDataDevelopmentDiamondDiseaseEnsureGoalsLeadLigandsLightLogisticsMethodsOralPharmaceutical ChemistryProtease InhibitorProteinsPublic DomainsSourceStructureSynchrotronsTechniquesTechnologyTimeViralbiophysical techniquescoronavirus diseaselead optimizationnovelnovel therapeuticsopen dataprocess optimizationscreeningsmall moleculestructural biology
项目摘要
Effective structural enablement with short turn-around and
rapid dissemination of well annotated structural data provides significant impact to the hit-to-lead and
lead optimization processes. This has been exemplified by the contribution of Diamond Light Source to
the COVID Moonshot - an open science collaboration that developed a novel non-peptidomimetic small
molecule orally bioavailable SARS-CoV-2 main viral protease (Mpro) inhibitor with potent antiviral
activity starting from a high-throughput fragment screen in less than 12 months. This project has
demonstrated that achieving real-time turnaround of structural data is not only technically feasible, but
scientifically crucial to accelerating compound progression.
Additionally, crystallographic fragment screening is a well-validated method for mapping protein ligand
binding sites and identifying starting points for the development of novel therapeutics for a wide range
of diseases. This technique is highly sensitive and owing to developments in synchrotron technology
plus the establishment of dedicated screening facilities, such as the world-first XChem platform at
Diamond Light Source, the throughput is now comparable to other biophysical techniques such as NMR
and SPR with the advantage that structural information is immediately available to drive fragment-tolead
development.
The Structural Biology Core has been specifically situated at the Diamond Light Source's XChem
facility to capitalize on its world-leading high-throughput crystallography capabilities in order to
implement the logistics and technologies required to consistently achieve the acceleration required to
meet the ASAP AViDD Center's ambitious medicinal chemistry goals.
This core will be responsible for the successful delivery of crystallographic fragment screens, the rapid
turn-around of protein-ligand crystal structures for all compounds generated by this center and ensuring
all crystal structures are promptly available, at high quality and fully annotated, in the public domain.
有效的结构支持,周转时间短,
注释良好的结构数据的快速传播对命中到引导提供了显著影响,
领先的优化流程。钻石光源的贡献就是一个例证,
COVID Moonshot -一项开放式科学合作,开发了一种新型非肽模拟小分子,
一种口服生物可利用的SARS-CoV-2主要病毒蛋白酶(Mpro)抑制剂,具有强效抗病毒作用
在不到12个月的时间内从高通量片段筛选开始。这个项目
证明了实现结构数据的实时周转不仅在技术上是可行的,
在科学上对加速复合进展至关重要。
此外,晶体学片段筛选是一种经过充分验证的蛋白质配体作图方法
结合位点,并确定开发新的治疗方法的起点,
疾病。这种技术是高度敏感的,由于同步加速器技术的发展,
再加上建立专门的筛选设施,如世界上第一个XChem平台,
钻石光源,现在的吞吐量与其他生物物理技术,如核磁共振
和SPR的优点是结构信息可以立即用于驱动片段到头部
发展
结构生物学核心已经专门位于钻石光源的XChem
利用其世界领先的高通量晶体学能力,
实施所需的物流和技术,以持续实现所需的加速,
实现ASAP AViDD中心雄心勃勃的药物化学目标。
该核心将负责成功交付晶体碎片筛选、快速
由该中心产生的所有化合物的蛋白质-配体晶体结构的转变,并确保
所有的晶体结构都可以在公共领域以高质量和充分注释的方式迅速获得。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Damon Chodera其他文献
John Damon Chodera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Damon Chodera', 18)}}的其他基金
AI-driven Structure-enabled Antiviral Platform (ASAP)
人工智能驱动的结构支持抗病毒平台 (ASAP)
- 批准号:
10513865 - 财政年份:2022
- 资助金额:
$ 128.87万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 128.87万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 128.87万 - 项目类别:
Standard Grant