Leveraging the HIF-alpha pathway to improve the engraftment and therapeutic efficacy of human nanowired cardiac organoids

利用 HIF-α 途径提高人类纳米线心脏类器官的植入和治疗效果

基本信息

  • 批准号:
    10513292
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-16 至 2024-05-15
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY: Heart disease accounts for nearly 1 in 4 deaths in the United States each year, highlighting the urgent need for therapies that can repair damaged hearts. Human induced pluripotent stem cell- derived cardiomyocytes (hiPSC-CMs) have emerged as a powerful cell source for cardiac repair, but their potential has been limited by poor survival and engraftment after injection. To address these challenges, our lab has pioneered the development of nanowired human cardiac organoids composed of electrically conductive silicon nanowires (e-SiNWs), hiPSC-CMs, and supporting cells. Our preliminary in vivo studies showed that nanowired cardiac organoids successfully engraft in ischemia/reperfusion (I/R) injured rat hearts and develop more organized contractile structures compared to non-nanowired cardiac organoids. Despite this progress, less than half (~30%) of injected organoids remained engrafted in infarcted hearts 7 days post-transplantation, which can be attributed to inadequate prevascularization and hypoxic/ischemic preconditioning of the organoids in vitro. To address this, we have explored pharmacological stabilization of HIF-a as a strategy to promote prevascularization and ischemic tolerance within the organoids. My preliminary in vitro data showed that treatment with Molidustat, a prolyl hydroxylase domain (PHD) inhibitor, significantly improved endothelial network and lumen formation (i.e., ~150% increase of CD31+ coverage) within the cardiac organoids. While these results are promising, further investigation is necessary to reveal phenotypic and genotypic changes in HIF-α stabilized cardiac organoids and how they correlate with transplantation efficiency. The goals of this proposal are to determine the effects of HIF-α stabilization on vascular maturation, cardiac function, cell and tissue-level metabolism, and transcriptomic changes in cardiac organoids (Aim 1), and to demonstrate therapeutic efficacy of HIF-α stabilized organoids in a rat model of myocardial I/R injury (Aim 2). The central hypothesis of this proposal is that stabilization of HIF-α signaling in cardiac organoids improves the survival and engraftment of hiPSC-CMs in infarcted myocardium and enhances their capacity to promote cardiac functional recovery in injured hearts. The proposal is innovative in that, for the first time, we will investigate how hypoxia mimetic agents precondition human engineered cardiac tissue to enhance the transplantation efficiency of hiPSC-CMs. My long-term goal is to develop clinically applicable cardiac regenerative therapies to treat cardiovascular diseases. Accordingly, we will pursue the following specific aims: 1) Determine how pharmacological HIF-α stabilization reprograms and preconditions human cardiac organoids for ischemic protection, and 2) Determine the effects of HIF-α stabilization on graft-host anastomosis, long-term engraftment, and therapeutic efficacy of nanowired human cardiac organoids in injured hearts. This research will inform emergent clinical applications of hypoxia mimetic agents to treat cardiovascular disease and will help advance our human cardiac organoid platform towards large animal studies to accelerate their clinical translation.
项目摘要:每年在美国,心脏病分别近四分之一, 强调迫切需要修复受损心脏的疗法。人类诱导的多能干细胞 衍生的心肌细胞(HIPSC-CMS)已成为心脏修复的强大细胞来源,但它们 注射后的生存和植入不良的限制。为了应对这些挑战,我们的 实验室率先开发了由导电的纳米人类心脏器官的发展 硅纳米线(E-SINWS),HIPSC-CM和支持细胞。我们的初步体内研究表明 纳米心脏器官成功地植入缺血/再灌注(I/R)受伤的老鼠心脏并发育 与非纳米心脏器官相比,有组织的收缩结构更加有组织。尽管取得了这种进展,但更少 移植后7天,超过一半(〜30%的注射器官仍植入了梗塞心脏, 可以归因于体外的类器官的预性和缺氧/缺血性预处理不足。 为了解决这个问题,我们探索了HIF-A的药物稳定作为促进的策略 类器官内的预性和缺血性耐受性。我的初步体外数据表明 用丙酰羟化酶结构域(PHD)抑制剂Molidustat处理可显着改善内皮网络 心脏器官内的管腔形成(即CD31+覆盖率增加了约150%)。而这些结果 很有希望,需要进一步研究以揭示HIF-α稳定的表型和基因型变化 心脏器官及其与移植效率的相关性。该提议的目标是 确定HIF-α稳定对血管成熟,心脏功能,细胞和组织水平的影响 代谢和心脏器官的转录组变化(AIM 1),并证明治疗效率 在心肌I/R损伤的大鼠模型中,HIF-α稳定器官的稳定器(AIM 2)。中心假设 提案是心脏器官中HIF-α信号传导的稳定可改善生存和植入 HIPSC-CMS梗塞心肌并增强了其促进心脏功能恢复的能力 受伤的心。该提案具有创新性,因为我们将首次研究缺氧如何模仿 代理前提人工程性心脏组织,以提高HIPSC-CMS的移植效率。 我的长期目标是开发临床适用的心脏再生疗法以治疗心血管 疾病。彼此之间,我们将追求以下特定目的:1)确定药物HIF-α如何 稳定重新编程和前提是人类心脏器官进行缺血保护,2)确定 HIF-α稳定对移植物宿主吻合,长期植入和治疗有效性的影响 受伤的心脏中的纳米人类心脏器官。这项研究将告知紧急临床应用 缺氧模拟剂治疗心血管疾病,将有助于进步我们的人类心脏器官 大型动物研究的平台,以加速其临床翻译。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan W Barrs其他文献

Ryan W Barrs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan W Barrs', 18)}}的其他基金

Leveraging the HIF-alpha pathway to improve the engraftment and therapeutic efficacy of human nanowired cardiac organoids
利用 HIF-α 途径提高人类纳米线心脏类器官的植入和治疗效果
  • 批准号:
    10658988
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

University of Wisconsin Prostate SPORE
威斯康星大学前列腺孢子
  • 批准号:
    10555398
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
  • 批准号:
    10742435
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
  • 批准号:
    10600737
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
  • 批准号:
    10680043
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了