Leveraging the HIF-alpha pathway to improve the engraftment and therapeutic efficacy of human nanowired cardiac organoids
利用 HIF-α 途径提高人类纳米线心脏类器官的植入和治疗效果
基本信息
- 批准号:10658988
- 负责人:
- 金额:$ 2.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-16 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdvanced DevelopmentAffectAnastomosis - actionAnimal ModelAnimalsBiological ProcessBlood VesselsBrain Hypoxia-IschemiaCardiacCardiovascular DiseasesCause of DeathCell SurvivalCell TherapyCellsCessation of lifeClinicalDataDevelopmentDissociationEchocardiographyElectric ConductivityElectrocardiogramEndothelial CellsEndotheliumEngineeringEngraftmentFibroblastsFoundationsGenesGenotypeGoalsHeartHeart DiseasesHeart InjuriesHistologicHumanHuman EngineeringHydroxylationHypoxiaHypoxia Inducible FactorHypoxia-Inducible Factor PathwayIn VitroInfarctionInjectionsInvestigationIschemiaIschemic PreconditioningMetabolicMetabolismModelingMyocardial InfarctionMyocardial Reperfusion InjuryMyocardiumOrganoidsOxygenasesPECAM1 genePathway interactionsPatientsPharmaceutical PreparationsPhenotypePrincipal Component AnalysisProcollagen-Proline DioxygenaseProductionRattusRecovery of FunctionReperfusion InjuryResearchRoleSignal PathwaySignal TransductionSiliconSourceStromal CellsStructureSupporting CellTimeTissue TransplantationTissuesTransplantationTreatment EfficacyUnited StatesVascular Endothelial Growth FactorsVascularizationVisualizationangiogenesiscardiac repaircardiac tissue engineeringclinical applicationclinical translationheart damageheart functionimprovedin vivoinduced pluripotent stem cell derived cardiomyocytesinhibitorinnovationinsightmimeticsnanowirepharmacologicphase III trialpost-transplantpreconditioningprogramspublic health relevanceregenerative therapyrepairedtranscription factortranscriptometranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY: Heart disease accounts for nearly 1 in 4 deaths in the United States each year,
highlighting the urgent need for therapies that can repair damaged hearts. Human induced pluripotent stem cell-
derived cardiomyocytes (hiPSC-CMs) have emerged as a powerful cell source for cardiac repair, but their
potential has been limited by poor survival and engraftment after injection. To address these challenges, our
lab has pioneered the development of nanowired human cardiac organoids composed of electrically conductive
silicon nanowires (e-SiNWs), hiPSC-CMs, and supporting cells. Our preliminary in vivo studies showed that
nanowired cardiac organoids successfully engraft in ischemia/reperfusion (I/R) injured rat hearts and develop
more organized contractile structures compared to non-nanowired cardiac organoids. Despite this progress, less
than half (~30%) of injected organoids remained engrafted in infarcted hearts 7 days post-transplantation, which
can be attributed to inadequate prevascularization and hypoxic/ischemic preconditioning of the organoids in vitro.
To address this, we have explored pharmacological stabilization of HIF-a as a strategy to promote
prevascularization and ischemic tolerance within the organoids. My preliminary in vitro data showed that
treatment with Molidustat, a prolyl hydroxylase domain (PHD) inhibitor, significantly improved endothelial network
and lumen formation (i.e., ~150% increase of CD31+ coverage) within the cardiac organoids. While these results
are promising, further investigation is necessary to reveal phenotypic and genotypic changes in HIF-α stabilized
cardiac organoids and how they correlate with transplantation efficiency. The goals of this proposal are to
determine the effects of HIF-α stabilization on vascular maturation, cardiac function, cell and tissue-level
metabolism, and transcriptomic changes in cardiac organoids (Aim 1), and to demonstrate therapeutic efficacy
of HIF-α stabilized organoids in a rat model of myocardial I/R injury (Aim 2). The central hypothesis of this
proposal is that stabilization of HIF-α signaling in cardiac organoids improves the survival and engraftment of
hiPSC-CMs in infarcted myocardium and enhances their capacity to promote cardiac functional recovery in
injured hearts. The proposal is innovative in that, for the first time, we will investigate how hypoxia mimetic
agents precondition human engineered cardiac tissue to enhance the transplantation efficiency of hiPSC-CMs.
My long-term goal is to develop clinically applicable cardiac regenerative therapies to treat cardiovascular
diseases. Accordingly, we will pursue the following specific aims: 1) Determine how pharmacological HIF-α
stabilization reprograms and preconditions human cardiac organoids for ischemic protection, and 2) Determine
the effects of HIF-α stabilization on graft-host anastomosis, long-term engraftment, and therapeutic efficacy of
nanowired human cardiac organoids in injured hearts. This research will inform emergent clinical applications
of hypoxia mimetic agents to treat cardiovascular disease and will help advance our human cardiac organoid
platform towards large animal studies to accelerate their clinical translation.
项目概述:心脏病占美国每年死亡人数的近四分之一,
强调了对修复受损心脏的疗法的迫切需求。人诱导多能干细胞-
衍生的心肌细胞(hiPSC-CM)已经成为心脏修复的强大细胞来源,但其
注射后的存活率和植入率差限制了其潜力。为了应对这些挑战,我们
实验室率先开发了由导电材料组成的人类心脏类器官,
硅纳米线(e-SiNW)、hiPSC-CM和支持细胞。我们的初步体内研究表明,
体外培养的心脏类器官成功移植到缺血/再灌注(I/R)损伤的大鼠心脏中并发育
与非心脏类器官相比,具有更有组织的收缩结构。尽管取得了这些进展,但
移植后7天,超过一半(约30%)的注射类器官仍植入梗死心脏,
可以归因于体外类器官的不充分的预血管化和缺氧/缺血预处理。
为了解决这个问题,我们探索了HIF-a的药理学稳定性作为促进HIF-a表达的策略。
类器官内的预血管化和缺血耐受性。我的初步体外实验数据显示,
Molidustat(脯氨酰羟化酶结构域(PHD)抑制剂)治疗显著改善了内皮网络
和管腔形成(即,CD 31+覆盖率增加约150%)。虽然这些结果
有希望,进一步的研究是必要的,以揭示表型和基因型的变化,HIF-α稳定
心脏类器官以及它们与移植效率的关系。本提案的目标是
确定HIF-α稳定对血管成熟、心功能、细胞和组织水平的影响
心脏类器官的代谢和转录组学变化(目的1),并证明治疗疗效
HIF-α稳定的类器官在心肌I/R损伤大鼠模型中的作用(目的2)。这个问题的核心假设是
这一观点认为,心脏类器官中HIF-α信号转导的稳定性改善了心肌细胞的存活和植入。
hiPSC-CM在梗死心肌中的表达,并增强其促进心脏功能恢复的能力,
受伤的心该建议是创新的,因为我们将首次研究低氧模拟如何
试剂预处理人工程化心脏组织以增强hiPSC-CM的移植效率。
我的长期目标是开发临床适用的心脏再生疗法,
疾病因此,我们将追求以下具体目标:1)确定药理学HIF-α
稳定化重新编程和预处理人类心脏类器官用于缺血保护,以及2)确定
HIF-α稳定化对移植物-宿主吻合术、长期植入和
受损心脏中的人类心脏类器官。这项研究将为紧急临床应用提供信息
缺氧模拟剂治疗心血管疾病,并将有助于促进我们的人类心脏类器官
大型动物研究平台,以加速其临床转化。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transplantation of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Regenerative Therapy.
- DOI:10.3389/fcvm.2021.707890
- 发表时间:2021
- 期刊:
- 影响因子:3.6
- 作者:Silver SE;Barrs RW;Mei Y
- 通讯作者:Mei Y
Nanowired human cardiac organoid transplantation enables highly efficient and effective recovery of infarcted hearts.
- DOI:10.1126/sciadv.adf2898
- 发表时间:2023-08-04
- 期刊:
- 影响因子:13.6
- 作者:Tan, Yu;Coyle, Robert C.;Barrs, Ryan W.;Silver, Sophia E.;Li, Mei;Richards, Dylan J.;Lin, Yiliang;Jiang, Yuanwen;Wang, Hongjun;Menick, Donald R.;Deleon-Pennell, Kristine;Tian, Bozhi;Mei, Ying
- 通讯作者:Mei, Ying
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan W Barrs其他文献
Ryan W Barrs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan W Barrs', 18)}}的其他基金
Leveraging the HIF-alpha pathway to improve the engraftment and therapeutic efficacy of human nanowired cardiac organoids
利用 HIF-α 途径提高人类纳米线心脏类器官的植入和治疗效果
- 批准号:
10513292 - 财政年份:2021
- 资助金额:
$ 2.63万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 2.63万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 2.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)