Data Coordination Core

数据协调核心

基本信息

  • 批准号:
    10513123
  • 负责人:
  • 金额:
    $ 234.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-26 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The Kids First Data Coordinating Core (DCC) supports the data intake, management, and release for the largest pediatric genomic resource available to the public. This currently includes 40 projects, 48,000 genomes, and 23 released studies as well as other relevant interoperable datasets. The DCC is responsible for ingestion, harmonization, curation and provisioning data to the Kids First Data Resource Core (DRC) in lossless and high utility formats. This includes retaining source data and requisite metadata for scientific discovery across a wide range of cancer and birth defect research domains. Through this experience, we have developed the Kids First “Data Tracker” application as a key tool for collaboratively working with data generators, analysts, investigators and NIH program staff for effective data coordination. The DCC will expand the application based on the use cases around clinical data ingestion, AWS S3 storage management, status reporting, workflow automation and dbGaP submissions. The data exchange endpoint between the DCC and DRC will be a FHIR service and provide the ability for other interoperable data resources to integrate with Kids First data. We will continue to improve on our genomic data best practices and expand the portfolio of pipelines available for long-read sequencing, epigenomics and other data modalities as required for the Kids First community. All bioinformatics pipeline development will leverage our experience building community-based best practice workflows utilizing Common Workflow Language (CWL) and Docker so that they can be reproducibly used by the community. Similarly, the DCC will continue to expand and improve on the clinical/phenotypic data collection by building a standards-based curation toolkit that integrates with the Data Tracker application. As the collection of Kids First variants scales to the level of tens of billions of variants, the DCC will help support the community by building out easy to use workflows for variant filtering and incorporate more expansive annotation that will allow researchers to more easily identify variants and clinical data of further interest and investigation. The DCC will work hand in hand with the Kid First Administrative and Outreach Core (AOC) to provide technical user support, training and other documentation to support the use of the data, pipelines and other tools developed for Kids First to help empower and accelerate research and discovery in the scientific community.
项目摘要 儿童第一数据协调核心(DCC)支持 最大的儿科基因组资源提供给公众。目前包括40个项目,48,000个 基因组和23项已发布的研究以及其他相关的可互操作数据集。DCC负责 将数据摄取、协调、管理和配置到Kids First Data Resource Core(DRC), 无损和高实用性格式。这包括保留源数据和必要的元数据, 在广泛的癌症和出生缺陷研究领域的发现。通过这次经历,我们 开发了Kids First“Data Tracker”应用程序,作为协作处理数据的关键工具 生成器,分析师,调查人员和NIH项目人员进行有效的数据协调。DCC将扩大 应用程序基于临床数据摄取、AWS S3存储管理、状态 报告、工作流自动化和dbGaP提交。DCC与 DRC将是一项FHIR服务,并为其他可互操作的数据资源提供与Kids集成的能力 第一个数据。我们将继续改进我们的基因组数据最佳实践,并扩大管道组合 可用于长读序测序、表观基因组学和其他数据模式,如儿童优先计划所需 社区所有生物信息学管道开发将利用我们的经验, 使用通用工作流语言(CWL)和Docker的最佳实践工作流, 可重复使用的社区。同样,发展协调委员会将继续扩大和改善 通过构建基于标准的策展工具包(与数据集成)收集临床/表型数据 追踪器应用程序。随着Kids First变体的集合扩展到数百亿个变体的水平, DCC将通过构建易于使用的变体过滤工作流程来帮助支持社区,并将其纳入 更广泛的注释,使研究人员能够更容易地识别变异和临床数据, 更多的兴趣和研究。DCC将与儿童第一行政部门携手合作, 外联核心(AOC)提供技术用户支持、培训和其他文件,以支持使用 为儿童优先开发的数据、管道和其他工具,以帮助增强和加速研究, 科学界的发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allison Heath其他文献

Allison Heath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allison Heath', 18)}}的其他基金

Deep Phenotyping Children with Congenital Anomalies and Cancer Enrolled in Project:EveryChild
项目:EveryChild 对患有先天性异常和癌症的儿童进行深度表型分析
  • 批准号:
    10435096
  • 财政年份:
    2022
  • 资助金额:
    $ 234.83万
  • 项目类别:
Deep Phenotyping Children with Congenital Anomalies and Cancer Enrolled in Project:EveryChild
项目:EveryChild 对患有先天性异常和癌症的儿童进行深度表型分析
  • 批准号:
    10613574
  • 财政年份:
    2022
  • 资助金额:
    $ 234.83万
  • 项目类别:
Enhancing the Kids First Platform’s Support for Collaborative Programs and Community Engagement
加强“儿童第一”平台对合作项目和社区参与的支持
  • 批准号:
    10854223
  • 财政年份:
    2017
  • 资助金额:
    $ 234.83万
  • 项目类别:
Data Coordination Core
数据协调核心
  • 批准号:
    10708022
  • 财政年份:
    2017
  • 资助金额:
    $ 234.83万
  • 项目类别:
Utilizing FHIR to expand the availability of interoperable clinical and phenotypic data to the pediatric research community
利用 FHIR 扩大儿科研究界可互操作的临床和表型数据的可用性
  • 批准号:
    10876146
  • 财政年份:
    2017
  • 资助金额:
    $ 234.83万
  • 项目类别:

相似海外基金

Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
  • 批准号:
    10111492
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
  • 批准号:
    2332121
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
  • 批准号:
    10095096
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
  • 批准号:
    2335079
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    Cooperative Agreement
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
  • 批准号:
    10087446
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
  • 批准号:
    10104748
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
  • 批准号:
    10112149
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    EU-Funded
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
  • 批准号:
    83007861
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
  • 批准号:
    EP/Z533038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    Research Grant
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
  • 批准号:
    10100360
  • 财政年份:
    2024
  • 资助金额:
    $ 234.83万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了