High-speed imaging of cortical and white matter microvascular flow in AD/ADRD models
AD/ADRD 模型中皮质和白质微血管血流的高速成像
基本信息
- 批准号:10523289
- 负责人:
- 金额:$ 229.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease related dementiaAmyloidAmyloid depositionBehaviorBloodBlood CellsBlood VesselsBlood capillariesBlood flowBrainBudgetsCaliberCerebrovascular CirculationCerebrovascular DisordersDiseaseDisease ProgressionEventFire - disastersFluorescenceFunctional disorderGenesGenetic RiskHealthHeterogeneityImageImaging DeviceImpaired cognitionImpairmentIndividualKnowledgeLabelLasersLeadLeukocytesLinkLocationMeasurementMeasuresMediatingMicrocirculationMicroscopyModelingMolecularMusNeocortexNerve DegenerationNeurodegenerative DisordersPathogenicityPathologyPenetrationPerfusionPericytesPhotonsPhysiologic pulsePlayProductionRegional PerfusionRegulationReportingRiskRisk FactorsRoleSamplingScanningSeveritiesSignal TransductionSiteSourceSpeedStreamSurfaceSymptomsSystemTestingTheftTimeTissuesVisualizationWhite Matter DiseaseWorkamyloid pathologyblood flow measurementbrain cellcardiovascular risk factorcell typecerebrovascularconstrictionfluorescence imagingfluorophorehypoperfusionimaging approachimaging capabilitiesimaging systemin vivo imaginginnovationinsightinterestmouse modelmutantneurovascularneurovascular couplingneutrophilnoveloverexpressionrelating to nervous systemthree photon microscopyvascular risk factorwhite matterwhite matter damage
项目摘要
Summary: High-speed imaging of cortical and white matter microvascular flow in AD/ADRD models
Although vascular risk factors and cerebrovascular dysfunction are known to be pathogenically linked to
AD/ADRD, the mechanisms are not well understood. In AD/ADRD mouse models, several causes of decreased
blood flow and regulatory dysfunction that operate at different levels of the microvascular network have been
identified. In mice overexpressing mutant genes that cause AD and in mice with genetic and cardiovascular risk
factors for neurodegeneration, decreases in cerebral blood flow, impairment of neurovascular coupling,
narrowing of capillary lumens by pericytes, and stalling of capillary flow by arrested white blood cells have been
reported. However, much remains unknown because current approaches for quantifying microvascular flow are
insensitive to events occurring in individual microvessels in a network (i.e. they measure averaged flow across
many vessels so miss an event like a capillary stall) or are unable to evaluate network flow and perfusion changes
caused by microvascular events (i.e. they measure too few vessels at a time to quantify up- and down-stream
flow or regional perfusion changes due to a capillary stall). Flow and perfusion decreases and heterogeneity
arising from such events could play an important role in the progression of neurodegenerative disease, as
network microdomains with persistent or repeated epochs of network hypoperfusion – “oligemic micropockets”
– may be hotspots for brain cell dysfunction, amyloid accumulation, and microinfarcts. Measurement of flow
speed in every microvessel across a connected network is needed to investigate how transient microvascular
events impact network blood flow and tissue perfusion. This proposal seeks to develop and test a paradigm-
shifting approach to 2- and 3-photon (2P and 3P) excited fluorescence imaging to achieve the speed and depth
penetration necessary to simultaneously measure flow in ~300 microvessels in the neocortex or ~50 in the deep
subcortical white matter (WM) of mice. An adaptive excitation source (AES) generating femtosecond laser pulses
“on demand” is synchronized with fast 3D raster scanning and is programmed to fire pulses only where blood
vessels reside. Because the maximum laser power that can be delivered to the brain is rate limiting, AES restricts
2P/3P excitation pulses only to blood vessels enabling measurement of the speed, diameter, and signals from
additional cell type-specific fluorescent labels from all microvessels in a 300x300x300 µm3 volume in the cortex
or in a 200x200x100 µm3 volume in the deep WM (100 Hz volume imaging with 1x1x10 µm3 voxel size) (Aim 1).
This innovative imaging capability will be used to explore the collective impact and causal links between selected
molecular and cellular mechanisms of CBF abnormality in the cortex of AD mouse models, as well as to test the
hypothesis that oligemic micropockets are sites of amyloid deposition (Aim 2). The ability of AES imaging to
explore network flow and perfusion in the deep WM of mice enables the examination of the impact of genetic
and cardiovascular risk factors associated with AD/ADRD on the WM microvascular network to provide novel
insights into how global hypoperfusion induces WM damage at the microscale level (Aim 3).
摘要:AD/ADRD模型中皮质和白质微血管流的高速成像
尽管已知血管危险因素和脑血管功能障碍与
AD/ADRD,这些机制尚不清楚。在AD/ADRD鼠标模型中,有几种降低的原因
在不同水平的微血管网络中运行的血流和调节功能障碍已是
确定。在过表达突变基因的小鼠中,导致AD和具有遗传和心血管风险的小鼠
神经变性的因素,脑血流减少,神经血管耦合障碍,
通过周细胞缩小毛细血管流明,被捕的白血细胞的毛细血管流量已经
报告。但是,由于当前量化微血管流动的方法是
对网络中单个微血管中发生的事件不敏感(即它们测量平均流量
许多船只因此错过了诸如毛细管摊位之类的事件)或无法评估网络流和灌注变化
由微血管事件引起(即它们一次测量太少,以量化上游和下游
流量或区域灌注因毛细管失速而变化)。流量和灌注下降和异质性
由于这种事件而引起的可能在神经退行性疾病的进展中起重要作用,因为
网络微域具有持续或重复的网络灌注时期 - “寡头微弹药”
- 可能是用于脑细胞功能障碍,淀粉样蛋白积累和微吸收性的热点。流量的测量
需要在连接网络上的每个微型分裂中的速度来研究瞬时微血管
事件会影响网络血流和组织灌注。该建议旨在开发和测试范式 -
转移方法转向2光(2p和3p)激发荧光成像以达到速度和深度
在新皮层中〜300微血管中轻松测量流动所需的穿透性或深处〜50
小鼠皮质下白质(WM)。产生飞秒激光脉冲的自适应兴奋源(AES)
“按需”与快速的3D栅格扫描同步,并且仅在血液的地方进行射击脉冲
船只居住。因为可以传递到大脑的最大激光功率是限制速率的,AES限制了
2p/3p兴奋性脉冲仅针对血管,从而测量了速度,直径和信号的测量
来自所有微血管的其他细胞类型特异性荧光标签在皮质中的300x300x300 µm3体积中
或在深WM中的200x200x100 µm3体积(100 Hz体积成像为1x1x10 µm3素体尺寸)(AIM 1)。
这种创新的成像能力将用于探索所选的集体影响和因果关系
AD小鼠模型皮质中CBF绝对性的分子和细胞机制,并测试
假设寡量微量流量是淀粉样蛋白沉积的部位(AIM 2)。 AES成像的能力
探索小鼠深WM中的网络流量和灌注能够检查通用的影响
与WM微血管网络上与AD/ADRD相关的心血管危险因素可提供新颖
洞察全球灌注量如何在微观级别诱导WM损伤(AIM 3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Costantino Iadecola其他文献
Costantino Iadecola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Costantino Iadecola', 18)}}的其他基金
ApoE4, neurovascular injury and cognitive impairment
ApoE4、神经血管损伤和认知障碍
- 批准号:
10419353 - 财政年份:2022
- 资助金额:
$ 229.65万 - 项目类别:
ApoE4, Neurovascular Injury and Cognitive Impairment
ApoE4、神经血管损伤和认知障碍
- 批准号:
10593979 - 财政年份:2022
- 资助金额:
$ 229.65万 - 项目类别:
Alzheimer's Disease Viewed as a Neurovascular Inflammatory Disorder
阿尔茨海默病被视为一种神经血管炎症性疾病
- 批准号:
9195011 - 财政年份:2016
- 资助金额:
$ 229.65万 - 项目类别:
ApoE4 and mechanisms of diffuse white matter injury
ApoE4 与弥漫性白质损伤的机制
- 批准号:
9756482 - 财政年份:2016
- 资助金额:
$ 229.65万 - 项目类别:
ApoE4 and mechanisms of diffuse white matter injury
ApoE4 与弥漫性白质损伤的机制
- 批准号:
9355719 - 财政年份:2016
- 资助金额:
$ 229.65万 - 项目类别:
ApoE4 and mechanisms of diffuse white matter injury
ApoE4 与弥漫性白质损伤的机制
- 批准号:
9264693 - 财政年份:2016
- 资助金额:
$ 229.65万 - 项目类别:
Dietary sodium, neurovascular dysfunction and cerebrovascular risk
膳食钠、神经血管功能障碍和脑血管风险
- 批准号:
10298081 - 财政年份:2015
- 资助金额:
$ 229.65万 - 项目类别:
Dietary Sodium, Neurovascular Dysfunction and Cerebrovascular Risk
膳食钠、神经血管功能障碍和脑血管风险
- 批准号:
10650322 - 财政年份:2015
- 资助金额:
$ 229.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 229.65万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 229.65万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 229.65万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 229.65万 - 项目类别: