Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency

使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性

基本信息

  • 批准号:
    10522738
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary Broad agreement exists that future epidemics will occur, better preparedness is needed for managing surges, and much should be learned from the COVID-19 pandemic. The SARS-CoV-2 virus to-date has caused over 46 million infections, 3.25 million hospitalizations, and 745,000 deaths in the U.S. alone, with regional surges of varied timing, magnitude, and duration profoundly straining healthcare capacity and impacting patient, staff, and system safety. As with other epidemics, local outbreaks and surges continuously change, often resulting in crisis management, makeshift rooming, sub-standard personal protection equipment, and rationing of limited resources. Among other needs, better real-time methods are needed to anticipate hospital, equipment, and staff capacities and shortages to allow earlier preemptive mitigation (gap). While analytic models are increasingly used, most are at the more macro policy level rather than facility-spe- cific operational level (gap), in the latter case with little known about their use in practice, accuracy, decision- making workflow, adoption, utility, and impact on operations, outcomes, and safety. In our own work, we devel- oped and widely deployed integrated models that predict facility-specific and unit-specific demand, adapt to real-time changes in these, and estimate 4-week ahead daily capacity, demand, and shortages (rooms, equip- ment, staff) within any given facility, downloaded by systems in all 50 states and 91 countries. While use of systems engineering models is well-accepted in other settings, their use, utility, and impact is significantly un- der-studied in this important context and healthcare more generally, with potentially important lessons for the future (gap). This project thus will take a multi-methods approach to (Aim 1) conduct modeling research to further refine re- sults to-date, optimize accuracy, and address identified technical needs, (Aim 2) evaluate impacts and accu- racy of the developed models on improved hospital capacity and safety under a wide range of simulated future and past surge scenarios, and (Aim 3) maximize future utility by studying how our models were used in prac- tice during COVID-19, the model adoption process, types of resulting actions, barriers to use, and user percep- tions of utility, accuracy, and model-based decision-making. The project will be led by an experienced interdis- ciplinary healthcare modeling team, working closely with varied hospital data sites and an advisory committee with expertise in patient safety, epidemic response, hospital surges, and modeling. Anticipated results include (1) validated robust models for preemptively anticipating and responding to care surges, (2) reduced unsafe hospital crisis management conditions during future epidemics, and (3) improved understanding of how to best use systems engineering models to address epidemic surges and other important public health and care deliv- ery problems.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES C BENNEYAN其他文献

JAMES C BENNEYAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES C BENNEYAN', 18)}}的其他基金

Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency
使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性
  • 批准号:
    10672985
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    9904046
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    10015291
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    10252794
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    10488616
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
Model-Informed Understanding and Mitigation of the U.S. Opioid and Heroin Epidemic
对美国阿片类药物和海洛因流行病的模型知情理解和缓解
  • 批准号:
    9587080
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
OPTIMAL POLICIES FOR CLINICAL LAB QUALITY CONTROL
临床实验室质量控制的最佳政策
  • 批准号:
    2032151
  • 财政年份:
    1996
  • 资助金额:
    $ 40万
  • 项目类别:

相似海外基金

Development of pyroclastic surge flow model and elucidation of the damage toward human body in pyroclastic surge for planning effective disaster countermeasures
开发火山碎屑涌流模型并阐明火山碎屑涌对人体的损害,以制定有效的灾害对策
  • 批准号:
    22KJ1344
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency
使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性
  • 批准号:
    10672985
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Leveraging world's largest offshore observation networks and physics-based model integration with machine learning for real-time tsunami and storm surge forecasting along the Pacific coasts of Japan
利用世界上最大的海上观测网络以及基于物理的模型与机器学习的集成,对日本太平洋沿岸的实时海啸和风暴潮进行预测
  • 批准号:
    22K14459
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Future change of storm surge and high wave due to explosive cyclones and development of numerical model
爆发性气旋引起的风暴潮和巨浪的未来变化及数值模型的发展
  • 批准号:
    19K15097
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Establishment of integrated inundation risk assessment method using fine-resolution wave surge coupled model
基于精细分辨波涌耦合模型的综合淹没风险评估方法的建立
  • 批准号:
    19K15098
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probabilistic projection of future change in mega storm surge risk by storm surge model improvement and multi ensemble experiments
通过风暴潮模型改进和多集合实验对特大风暴潮风险未来变化进行概率预测
  • 批准号:
    19H02253
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a theoretical circuit analysis model for express the lightning surge characteristics of a wind turbine tower in the entire time domain.
开发了一种理论电路分析模型,用于在整个时域中表达风力涡轮机塔架的雷电浪涌特性。
  • 批准号:
    18K13750
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of seamless tsunami and storm surge inundation model using adaptive mesh refinement
使用自适应网格细化开发无缝海啸和风暴潮淹没模型
  • 批准号:
    17K06577
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Dynamically Coupled Storm Surge Hazard-Infrastructure Model for Effective Real-Time Risk-Informed Decision Making
用于有效实时风险知情决策的新型动态耦合风暴潮灾害基础设施模型
  • 批准号:
    1563372
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of worst case typhoon-surge model and estimation of its occurrence probability
最坏情况台风浪涌模型的建立及其发生概率的估计
  • 批准号:
    15H04048
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了