R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories

R18 闭环诊断:AHRQ R18 患者安全学习实验室

基本信息

  • 批准号:
    10252794
  • 负责人:
  • 金额:
    $ 60.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-30 至 2023-09-29
  • 项目状态:
    已结题

项目摘要

Abstract Diagnostic errors in primary care often are due to failures to follow up (“close the loop”) on diagnostic tests, referrals, and symptoms. More specifically, (1) diagnostic tests and referrals often are not completed, (2) results of diagnostic tests and referrals often are not conveyed to patients and their primary care physicians, and (3) primary care physicians frequently are not informed when symptoms evolve that could alter a diagnosis. To address these gaps, our multidisciplinary team of clinicians, systems engineers, and patients will use an engineering life cycle to design systems to decrease the number of associated diagnostic errors by preventing each of these types of failures in a large primary care practice. Our proposed research employs innovative evidenced-based system engineering (SE) methods to develop highly reliable and robust processes in other industries, but not yet widely adopted in healthcare. Our specific aims are as follows: (Aim 1) Design, develop, and refine highly reliable “closed loop” systems for diagnostic tests and referrals that ensure these occur within clinically- and patient-important timeframes; (Aim 2) Design, develop, and refine a highly reliable “closed loop” symptom monitoring system to ensure clinicians receive information about evolving symptoms of concern; and (Aim 3) Ensure broader generalizability of results of Aims 1 and 2 by ensuring these new processes are effective in a community health center in an underserved community, a large telemedicine system, and a representative range of simulated other health system settings and populations. Our research hypothesis is that a methodical systems approach to closing loops on diagnostic processes will measurably improve timely completion of ordered tests, referrals, and symptom reports, leading to reductions in diagnostic errors. Key innovations of our project are the use of high reliability and human factors methods, inclusion of patients and clinicians from other practices throughout the engineering process, and combined use of statistical, qualitative, and computer modeling methods to estimate improvements both in our primary site and more broadly. Projected results include increased completion of high-risk diagnostic tests, referrals, and concerning symptoms, in turn resulting in reduced diagnostic errors, negative health outcomes, and associated costs. Learning outcomes include improved understanding of closed loop diagnostic and monitoring problems in primary care, patient engagement in solutions to such problems, and the utility of systems engineering to important healthcare problems. Our project responds to 4 of the 8 Institute of Medicine recommendations from their Improving Diagnosis in Healthcare report, the President's Council of Advisors on Science and Technology recommendation that systems engineering be applied to primary care problems, and the PSLL solicitation emphases on value-based care, safety, patient engagement, and provider burden.
摘要 初级保健中的诊断错误通常是由于对诊断测试的跟踪(闭合回路)失败, 转诊,和症状。更具体地说,(1)诊断测试和转诊经常没有完成,(2) 诊断测试和转诊的结果通常不会传达给患者及其初级保健医生, 以及(3)初级保健医生经常在症状演变时不被告知,这可能会改变 诊断。为了弥补这些差距,我们由临床医生、系统工程师和患者组成的多学科团队将 使用工程生命周期设计系统,以通过以下方式减少相关诊断错误的数量 在大型初级保健实践中防止每一种类型的失败。我们建议的研究采用了 创新的基于证据的系统工程(SE)方法,以开发高度可靠和健壮的过程 在其他行业,但尚未在医疗保健领域广泛采用。我们的具体目标如下: (目标1)为诊断测试和转诊设计、开发和完善高度可靠的“闭环系统”, 确保这些在临床和患者重要的时间范围内发生; (目标2)设计、开发和完善高度可靠的“闭环”症状监测系统,以确保 临床医生收到有关不断演变的担忧症状的信息;以及 (目标3)确保目标1和目标2的结果具有更广泛的普遍性,方法是确保这些新进程 在服务不足的社区的社区卫生中心、大型远程医疗系统和 模拟的其他卫生系统设置和人口的代表性范围。 我们的研究假设是,一种系统的方法来关闭诊断过程的循环将 显著提高有序测试、转诊和症状报告的及时完成率,从而减少 在诊断错误方面。我们项目的关键创新是使用了高可靠性和人为因素的方法, 将患者和临床医生纳入整个工程流程,并进行联合使用 统计、定性和计算机建模方法,以评估我们主要站点的改进 更广泛地说。预计结果包括完成高风险诊断测试、转诊和 关于症状,进而减少诊断错误、负面健康结果和相关的 成本。学习成果包括更好地理解闭环系统诊断和监控问题 在初级保健中,患者对此类问题的解决方案的参与,以及系统工程对 重要的医疗保健问题。我们的项目回应了来自医学研究所的8项建议中的4项 他们在医疗保健报告中的改善诊断,总统科学和技术顾问委员会 建议将系统工程应用于初级保健问题,以及PSLL征集 重点关注基于价值的护理、安全性、患者参与度和提供者负担。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES C BENNEYAN其他文献

JAMES C BENNEYAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES C BENNEYAN', 18)}}的其他基金

Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency
使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性
  • 批准号:
    10522738
  • 财政年份:
    2022
  • 资助金额:
    $ 60.68万
  • 项目类别:
Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency
使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性
  • 批准号:
    10672985
  • 财政年份:
    2022
  • 资助金额:
    $ 60.68万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    9904046
  • 财政年份:
    2019
  • 资助金额:
    $ 60.68万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    10015291
  • 财政年份:
    2019
  • 资助金额:
    $ 60.68万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    10488616
  • 财政年份:
    2019
  • 资助金额:
    $ 60.68万
  • 项目类别:
Model-Informed Understanding and Mitigation of the U.S. Opioid and Heroin Epidemic
对美国阿片类药物和海洛因流行病的模型知情理解和缓解
  • 批准号:
    9587080
  • 财政年份:
    2018
  • 资助金额:
    $ 60.68万
  • 项目类别:
OPTIMAL POLICIES FOR CLINICAL LAB QUALITY CONTROL
临床实验室质量控制的最佳政策
  • 批准号:
    2032151
  • 财政年份:
    1996
  • 资助金额:
    $ 60.68万
  • 项目类别:

相似海外基金

SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Cooperative Agreement
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
  • 批准号:
    2336525
  • 财政年份:
    2024
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Standard Grant
Sustainable Sludge Valorisation Technology for Closed-Loop Resource Recovery
用于闭环资源回收的可持续污泥增值技术
  • 批准号:
    EP/Y02480X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Research Grant
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Continuing Grant
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
  • 批准号:
    2346726
  • 财政年份:
    2024
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Standard Grant
TheraVR – A Closed-Loop MR Interface offering highly personalised mental health solutions
TheraVR – 闭环 MR 界面,提供高度个性化的心理健康解决方案
  • 批准号:
    10054505
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Collaborative R&D
Lifetime optimisation of multiple deep closed-loop geothermal wells
多口深闭环地热井寿命优化
  • 批准号:
    2890095
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Studentship
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Standard Grant
GOALI: A System Theoretical Framework for Modeling, Analysis and Closed-loop Management of Supply Chains of Perishable Products
GOALI:易腐产品供应链建模、分析和闭环管理的系统理论框架
  • 批准号:
    2232412
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了