Genome Stability in Glia & Disease
神经胶质细胞基因组稳定性
基本信息
- 批准号:10522673
- 负责人:
- 金额:$ 45.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAffectApplications GrantsArchitectureAstrocytesBase Excision RepairsBiologyBrainBrain NeoplasmsCell physiologyCellsChromatinCritical PathwaysCytoplasmic GranulesDNA DamageDNA RepairDNA Repair DisorderDNA Repair PathwayDNA strand breakDataDefectDiseaseDisease modelEngineeringEventExcision RepairFunctional disorderGene DeletionGene ExpressionGene MutationGenesGenetic TranscriptionGenomeGenome StabilityGenomic InstabilityGenotoxic StressGerm-Line MutationGoalsHealthHomeostasisHumanHuman GenomeInheritedKnowledgeLinkMaintenanceMicrogliaModelingMolecular ConformationNerve DegenerationNervous system structureNeurodegenerative DisordersNeurodevelopmental DisorderNeurogliaNeurologicNeuronsNonhomologous DNA End JoiningOligodendrogliaPathogenesisPathogenicityPathway interactionsPhosphoric Monoester HydrolasesPolynucleotide 5&apos-Hydroxyl-KinasePopulationPredispositionProcessQuality of lifeResearchRibonucleotidesRoleSignal TransductionSpinocerebellar AtaxiasSyndromeTestingTherapeuticTherapeutic Interventionage relatedbasebrain healthcell typecognitive abilityexperimental studygenome integritygenomic locusgenotoxicityhomologous recombinationhuman diseasein vivomouse modelmyelinationnerve stem cellnervous system disordernestin proteinneuroinflammationneuron lossneuropathologynoveloligodendrocyte lineageoxidative damagepseudotoxoplasmosis syndromerelating to nervous systemrepairedresponsespatiotemporaltherapeutically effectivetherapy developmenttranscriptome sequencingtreatment strategywhite matter
项目摘要
Abstract
Genome stability is essential for human health. This is apparent from the multitude of inherited human syndromes
characterized by defective DNA damage responses. The nervous system is particularly prone to the
consequences of genome damage, and most inherited DNA repair deficiency syndromes involve
neurodegeneration, neurodevelopmental disorders or brain tumors. Defective maintenance of genome integrity
is also increasingly being linked to broader neurologic health issues, including age-related neurodegenerative
events that mar cognitive ability and quality of life. Understanding the mechanistic connections between faulty
DNA damage signaling and human disease is therefore of fundamental biomedical importance. Most studies
dealing with genome instability associated neuropathology focus on neuronal loss, such as the impact on
cerebellar granule or Purkinje neurons associated with various spinocerebellar ataxias. However, other features
of genome instability associated neurodegenerative syndromes include white matter defects, resulting from
oligodendrocyte dysfunction. Given the widespread alterations and reduction in white matter in these diseases,
and that most disease-causing gene mutations are ubiquitously expressed throughout the nervous system, it’s
very likely that other glial populations are also affected. For instance, neuroinflammation linked to astrocyte and
microglia activation also characterize certain diseases caused by DNA repair defects. However, direct
mechanistic studies to reconcile the contribution of glia to the pathobiology of genome instability syndromes are
sparse. The experiments proposed in this application will provide key data illuminating the glial DNA damage
response and how glia contribute to disease pathogenesis. We propose leveraging novel mouse models of
neurodegenerative disease with defective DNA damage signaling to determine the critical DNA strand break
repair pathways that support glial cell function in the mammalian brain. Accordingly, we will evaluate the
oligodendrocyte lineage for DNA damage susceptibility to determine how dysfunction in these glia occur in
human genome instability syndromes. Oligodendrocyte responses to DNA damage will also be assessed using
chromatin architecture as a predictor of genotoxic susceptibility. Finally, the impact of DNA damage on microglia
will be explored in a new model of the neuroinflammatory Aicardi Goutières Syndrome resulting from defective
ribonucleotide excision repair. Collectively, these data will provide critical information regarding the central
mechanisms that maintain the glial genome and how genome instability in these cells contribute to disease
pathogenesis. As effective therapeutic intervention for many neurological diseases is becoming possible, it’s
now critical to understand the full spectrum of degenerative changes that occur. Thus, data from this proposal
will provide an important framework for understanding progressive aspects of neurological disease resulting from
genome instability and will inform therapeutic strategies for treatment.
抽象的
基因组稳定对于人类健康至关重要。从众多的遗传综合症中可以看出这一点
以DNA损伤反应有缺陷的特征。神经系统特别容易
基因组损伤的后果以及涉及的大多数遗传DNA修复缺乏综合症
神经变性,神经发育障碍或脑肿瘤。基因组完整性的维持不足
越来越多地与更广泛的神经健康问题有关,包括与年龄相关的神经退行性问题
具有认知能力和生活质量的事件。了解故障之间的机械连接
因此,DNA损伤信号传导和人类疾病是基本的生物医学重要性。大多数研究
处理基因组不稳定性相关的神经病理学专注于神经元丧失,例如对
小脑颗粒或与各种脊椎小脑共济失调相关的Purkinje神经元。但是,其他功能
基因组不稳定性相关的神经退行性综合症包括白质缺陷
少突胶质细胞功能障碍。考虑到这些疾病中白质的宽度变化和减少,
而且,大多数致病基因突变在整个神经系统中普遍表达
其他神经胶质种群也很可能也受到影响。例如,神经炎症与星形胶质细胞和
小胶质细胞激活还表征了由DNA修复缺陷引起的某些疾病。但是,直接
调和神经胶质对基因组不稳定性综合症病理生物学的贡献的机理研究是
疏。本应用程序中提出的实验将提供关键数据,以阐明神经胶质DNA损伤
反应以及神经胶质如何促进疾病发病机理。我们建议利用新颖的鼠标模型
神经退行性疾病,具有缺陷的DNA损伤信号传导,以确定临界DNA链断裂
维修途径支持哺乳动物大脑中的神经胶质细胞功能。彼此之间,我们将评估
DNA损伤易感性的少突胶质细胞谱系确定这些神经胶质的功能障碍是如何发生的
人基因组不稳定性综合征。还将使用少突胶质细胞对DNA损伤的反应进行评估
染色质结构是遗传毒性敏感性的预测指标。最后,DNA损伤对小胶质细胞的影响
将以缺陷的神经炎症性aicardigoutières综合征的新模型进行探讨
核糖核苷酸惊喜维修。总的来说,这些数据将提供有关中央的关键信息
维持神经胶质基因组的机制以及这些细胞中基因组不稳定性如何促进疾病
发病。由于许多神经系统疾病的有效治疗干预变得可能成为可能
现在,重要的是了解发生的全部变性变化。那是来自此提案的数据
将提供一个重要的框架,以理解由
基因组不稳定,并将为治疗策略提供依据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER J MCKINNON其他文献
PETER J MCKINNON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER J MCKINNON', 18)}}的其他基金
Third Genome Dynamics in the Neurosciences Conference
神经科学会议上的第三届基因组动力学
- 批准号:
7806347 - 财政年份:2010
- 资助金额:
$ 45.5万 - 项目类别:
The DNA Damage Response and Tumorigenesis in the Brain
大脑中的 DNA 损伤反应和肿瘤发生
- 批准号:
9149701 - 财政年份:2003
- 资助金额:
$ 45.5万 - 项目类别:
The DNA Damage Response and Tumorigenesis in the Brain
大脑中的 DNA 损伤反应和肿瘤发生
- 批准号:
8854876 - 财政年份:2003
- 资助金额:
$ 45.5万 - 项目类别:
The DNA Damage Response and Tumorigenesis in the Brain
大脑中的 DNA 损伤反应和肿瘤发生
- 批准号:
9277198 - 财政年份:2003
- 资助金额:
$ 45.5万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Renal Osteodystrophy Precision Medicine Project
肾性骨营养不良精准医疗项目
- 批准号:
10681662 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Regulatory Genomics of Ozone Air Pollution Response in Vitro and In Vivo
体外和体内臭氧空气污染响应的监管基因组学
- 批准号:
10467348 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别: