Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions

利用定期收集的健康数据来改善自闭症和并发疾病的早期识别

基本信息

  • 批准号:
    10523408
  • 负责人:
  • 金额:
    $ 23.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-07 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT – Project 2 The overall goal of the Duke Autism Center of Excellence (ACE) is to use a translational digital health and computational approach to address the critical need for more effective autism screening tools, objective outcome measures, and brain-based biomarkers that can be used in clinical trials with young autistic children. This Project will develop and evaluate a novel digital health approach to autism screening. Universal autism screening is recommended for children at 18 months. This is typically achieved via a caregiver questionnaire. However, research has shown that a commonly used autism screening questionnaire has reduced accuracy when used in real-world settings, such as primary care. By leveraging health data related to early medical conditions collected as part of clinical care, Project 2 aims to develop an automatic, objective tool for autism prediction at 18 months that can be implemented in primary care settings. We will use routinely collected health data to develop a prediction model for autism and use the model to design a clinical decision support tool for providers that can be integrated into pediatric primary care and includes actionable guidance regarding referrals and linkage to services. We will first develop and validate a generalizable, off-the-shelf model to predict autism for use at 18 months of age using longitudinal claims data (Medicaid and Blue Cross Blue Shield) from a diverse sample of children across North Carolina with continuous coverage from birth to age 6 years (N ~ 230,000) to predict likelihood of an autism diagnosis (N ~ 6,000). We will then adapt the autism prediction model to the Duke University Health System (DUHS) clinical environment and augment it with granular electronic health record (EHR) data by using machine learning-based natural language processing to embed provider notes. Through engagement with stakeholders both within and outside of DUHS and in collaboration with Project 1, we will use the prediction model to design a clinical decision support prototype that could assist providers in making appropriate and timely referrals. Through the design process, we will identify a set of key priority factors to consider when choosing a clinical decision support for autism screening that are applicable across a broad range of stakeholders in different health care settings. Finally, leveraging our robust data on early health encounters, we will describe the nature and prevalence of patterns of medical conditions during early life. We will test the specific hypothesis that gastrointestinal problems during early life are associated with higher rates of psychiatric conditions by age 6.
摘要-项目2 杜克大学自闭症卓越中心(ACE)的总体目标是使用翻译的数字健康和 解决对更有效的自闭症筛查工具的迫切需求的计算方法,客观结果 措施,以及可用于自闭症儿童临床试验的基于大脑的生物标记物。本项目 将开发和评估一种新的数字健康方法来筛查自闭症。普遍的自闭症筛查是 推荐给18个月大的儿童使用。这通常是通过护理者问卷来实现的。然而, 研究表明,通常使用的自闭症筛查问卷在用于 现实世界的环境,例如初级保健。通过利用收集的与早期医疗状况相关的健康数据 作为临床护理的一部分,项目2旨在开发一种自动的、客观的工具来预测18个月的自闭症 这可以在初级保健环境中实施。我们将使用常规收集的健康数据来开发一种 自闭症的预测模型,并使用该模型为提供者设计临床决策支持工具,该工具可以 纳入儿科初级保健,并包括关于转诊和与 服务。我们将首先开发和验证一个可推广的现成模型,以预测18岁时使用的自闭症 使用纵向索赔数据(医疗补助和蓝十字蓝盾)从不同的样本 北卡罗来纳州从出生到6岁(N~230,000)连续覆盖的儿童预测 诊断为自闭症的可能性(N~6,000)。然后我们将使自闭症预测模型适用于公爵 大学卫生系统(DUHS)临床环境,并利用颗粒状电子病历增强其功能 (EHR)数据,通过使用基于机器学习的自然语言处理来嵌入提供商备注。穿过 与DUHS内外的利益相关者接触,并与项目1合作,我们将使用 用于设计临床决策支持原型的预测模型,该原型可以帮助提供者进行 适当和及时的转介。通过设计过程,我们将确定一组关键的优先因素,以 在选择适用于广泛范围的自闭症筛查的临床决策支持时要考虑 不同卫生保健环境中的利益相关者。最后,利用我们关于早期健康接触的强大数据, 我们将描述生命早期疾病模式的性质和流行程度。我们将测试 早期生活中的胃肠道问题与较高的精神病发病率相关的特定假设 到6岁时的状况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Alan Goldstein其他文献

Benjamin Alan Goldstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Alan Goldstein', 18)}}的其他基金

Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
  • 批准号:
    10656387
  • 财政年份:
    2022
  • 资助金额:
    $ 23.47万
  • 项目类别:
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
  • 批准号:
    10451954
  • 财政年份:
    2022
  • 资助金额:
    $ 23.47万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10598693
  • 财政年份:
    2020
  • 资助金额:
    $ 23.47万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10605248
  • 财政年份:
    2020
  • 资助金额:
    $ 23.47万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10192714
  • 财政年份:
    2020
  • 资助金额:
    $ 23.47万
  • 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
  • 批准号:
    10414814
  • 财政年份:
    2020
  • 资助金额:
    $ 23.47万
  • 项目类别:
Multifactorial spatiotemporal analyses to evaluate environmental triggers and patient-level clinical characteristics of severe asthma exacerbations in children
多因素时空分析评估儿童严重哮喘急性发作的环境触发因素和患者水平的临床特征
  • 批准号:
    9884782
  • 财政年份:
    2019
  • 资助金额:
    $ 23.47万
  • 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
  • 批准号:
    10698195
  • 财政年份:
    2017
  • 资助金额:
    $ 23.47万
  • 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
  • 批准号:
    8425985
  • 财政年份:
    2013
  • 资助金额:
    $ 23.47万
  • 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
  • 批准号:
    8725658
  • 财政年份:
    2013
  • 资助金额:
    $ 23.47万
  • 项目类别:

相似海外基金

Psychosocial factors as potential moderators of the association between prenatal stress from the Fort McMurray wildfire and social emotional development in 5-6 year old children
心理社会因素作为麦克默里堡野火产前压力与 5-6 岁儿童社会情绪发展之间关系的潜在调节因素
  • 批准号:
    467237
  • 财政年份:
    2021
  • 资助金额:
    $ 23.47万
  • 项目类别:
    Studentship Programs
Mechanisms of Sustained Selective Attention in 2- to 6- Year-Old Children
2至6岁儿童持续选择性注意力的机制
  • 批准号:
    7739271
  • 财政年份:
    2009
  • 资助金额:
    $ 23.47万
  • 项目类别:
Stage 1 Treatment Development with Homeless Mothers and their 2-6 Year Old Childr
无家可归的母亲及其 2-6 岁儿童的第一阶段治疗发展
  • 批准号:
    7627037
  • 财政年份:
    2009
  • 资助金额:
    $ 23.47万
  • 项目类别:
Mechanisms of Sustained Selective Attention in 2- to 6- Year-Old Children
2至6岁儿童持续选择性注意力的机制
  • 批准号:
    7921601
  • 财政年份:
    2009
  • 资助金额:
    $ 23.47万
  • 项目类别:
Stage 1 Treatment Development with Homeless Mothers and their 2-6 Year Old Childr
无家可归的母亲及其 2-6 岁儿童的第一阶段治疗发展
  • 批准号:
    8037547
  • 财政年份:
    2009
  • 资助金额:
    $ 23.47万
  • 项目类别:
Stage 1 Treatment Development with Homeless Mothers and their 2-6 Year Old Childr
无家可归的母亲及其 2-6 岁儿童的第一阶段治疗发展
  • 批准号:
    8035834
  • 财政年份:
    2009
  • 资助金额:
    $ 23.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了