Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
基本信息
- 批准号:10451954
- 负责人:
- 金额:$ 17.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdoptionAffectBehaviorBiological ModelsClinicalCommunity HospitalsConsensusDataData ScienceData ScientistData SetDecision MakingDecision Support ModelFeedbackFrequenciesFutureGoalsHandHealth systemHealthcare SystemsInstitutionInterventionKnowledgeLearningMachine LearningMapsMeasuresMedical DeviceMedicineMethodologyMethodsModelingMonitorPathway interactionsPatientsPerformancePhaseProcessProcess MeasureProviderPublic HealthRegulationResearchRiskSafetySeriesService settingSystemTechniquesTimeTrustUnited States National Library of MedicineWorkbasebioinformatics toolcare deliveryclinical careclinical decision supportclinical decision-makingcomplex datacost estimatedynamic systemevidence baseimplementation barriersimplementation evaluationimplementation outcomesimplementation scienceimprovedinnovationinsightmachine learning algorithmmachine learning modelmodel buildingmodels and simulationmultidisciplinaryprospectiveresearch clinical testingresponsesupport toolstheoriestooluptakeusability
项目摘要
PROJECT SUMMARY/ABSTRACT
The proliferation of “black box” Machine Learning (ML) models for Clinical Decision Support (CDS) has raised
concerns regarding CDS interpretability, actionability and overall usability, rendering a critical need for a clear
process that engages various stakeholders including both developers and users in implementation planning.
Our long-term goal is to formalize a process to guide health systems in planning, monitoring and evaluating
CDS implementation. The overall objective for this R21 is to develop and evaluate a generalizable strategy
to bring multidisciplinary stakeholders together during the CDS exploration phase to identify
facilitators and barriers to implementation in their contexts. In doing so, we will use Participatory System
Dynamics (PSD) modeling as a multi-component strategy to evaluate and plan implementation with
stakeholders during the exploration phase of implementation, when decision-making occurs, in a way where
ML-enabled CDS can be sustained over time. As such, we will focus on the upstream implementation
outcomes of acceptability, appropriateness, and feasibility of ML-enabled CDS. The rationale for this project is
that a process that engages diverse stakeholders in implementation planning early on will clarify commitment
to implementation and potential for adoption by revealing acceptability, feasibility, and appropriateness. For
this project we will focus on one particular set of ML-enabled CDS: Early Warning Scores (EWSs), used to
identify decompensating patients. We plan to accomplish our overall objective by pursuing two specific aims: 1.
Engage multidisciplinary stakeholders involved in EWS implementation (users, developers, implementers,
owners) from two systematically varying adoption contexts to co-define common barriers and facilitators to key
implementation outcomes of CDS acceptability, appropriateness, and feasibility using group model building
scripts from the field of system dynamics and 2. Evaluate the PSD process by measuring change in
commitment to adopt CDS (using measures of acceptability, appropriateness, and feasibility), eliciting
feedback, and estimating intervention effort. We will obtain data via a series of group modeling sessions from
stakeholders who have used CDS in different contexts, where alerts vary by target user, time, and frequency
among other factors. We will employ well-defined scripts from the field of System Dynamics modeling to
facilitate group discussion toward developing a shared theory about the problem of ML-enabled CDS response
(Aim 1). Because implementation of any strategy requires adaptation, we will evaluate the PSD process (Aim
2) to refine and prepare for use elsewhere. This contribution is significant because EWSs are widely used
across both academic and community hospitals. This contribution is innovative by using group modeling
techniques for the problem of ML-enabled CDS implementation, creating both methodological and substantive
findings. A future R01 will prospectively assess benefits of using this process in multiple use case settings
while continuing to build out the dynamic systems model of factors for downstream adoption.
项目总结/摘要
用于临床决策支持(CDS)的“黑盒”机器学习(ML)模型的激增,
关于CDS的可解释性、可操作性和整体可用性的问题,
在实施计划中,涉及各种利益相关者(包括开发人员和用户)的过程。
我们的长期目标是正式确定一个程序,指导卫生系统进行规划、监测和评估
CDS实施。R21的总体目标是制定和评估一项可推广的战略
在CDS探索阶段将多学科利益相关者聚集在一起,
促进者和障碍。在这样做时,我们将使用
动力学(PSD)建模作为一种多组件策略,用于评估和计划实施,
在实施的探索阶段,当决策发生时,
ML使能的CDS可以随时间持续。因此,我们将侧重于上游实施
ML使能CDS的可接受性、适当性和可行性结果。该项目的基本原理是
一个让不同利益攸关方尽早参与实施规划的进程将明确承诺,
通过揭示可接受性、可行性和适当性来实现和采用的可能性。为
在本项目中,我们将重点关注一组特定的ML启用CDS:早期预警评分(EWS),用于
识别失代偿病人我们计划通过追求两个具体目标来实现我们的总体目标:1.
让参与EWS实施的多学科利益相关者(用户、开发人员、实施者,
所有者)从两个系统不同的采用环境中共同定义共同的障碍和促进者,
使用组模型构建CDS可接受性、适当性和可行性的实施结果
来自系统动力学领域的脚本和2.通过测量以下方面的变化来评估PSD过程
承诺采用CDS(使用可接受性,适当性和可行性的措施),
反馈和估计干预努力。我们将通过一系列小组建模会议获得数据,
在不同环境中使用CDS的利益相关者,其中警报因目标用户、时间和频率而异
以及其它因素。我们将采用来自系统动力学建模领域的定义良好的脚本,
促进小组讨论,以发展关于ML启用CDS响应问题的共享理论
(Aim 1)。由于任何战略的实施都需要调整,我们将评估PSD过程(Aim
2)以改进和准备在其他地方使用。这一贡献是重要的,因为EWS被广泛使用
在学术和社区医院都有。这一贡献是创新性的使用群体建模
技术的问题ML启用CDS的实施,创建方法和实质性
调查结果。未来的R 01将前瞻性地评估在多个用例设置中使用此过程的好处
同时继续建立下游采用因素的动态系统模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Alan Goldstein其他文献
Benjamin Alan Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Alan Goldstein', 18)}}的其他基金
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10656387 - 财政年份:2022
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10605248 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10598693 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10192714 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10414814 - 财政年份:2020
- 资助金额:
$ 17.51万 - 项目类别:
Multifactorial spatiotemporal analyses to evaluate environmental triggers and patient-level clinical characteristics of severe asthma exacerbations in children
多因素时空分析评估儿童严重哮喘急性发作的环境触发因素和患者水平的临床特征
- 批准号:
9884782 - 财政年份:2019
- 资助金额:
$ 17.51万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10698195 - 财政年份:2017
- 资助金额:
$ 17.51万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10523408 - 财政年份:2017
- 资助金额:
$ 17.51万 - 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
- 批准号:
8425985 - 财政年份:2013
- 资助金额:
$ 17.51万 - 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
- 批准号:
8725658 - 财政年份:2013
- 资助金额:
$ 17.51万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 17.51万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 17.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 17.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.51万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 17.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.51万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 17.51万 - 项目类别:
Standard Grant