Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
基本信息
- 批准号:8725658
- 负责人:
- 金额:$ 3.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2014-09-02
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAddressAdvertisingAlgorithmsBiological MarkersBlood PressureBreast Cancer Risk Assessment ToolCardiacCardiovascular DiseasesCardiovascular systemCaringCessation of lifeCharacteristicsClinicClinicalCollaborationsComorbidityDataData AnalysesDevelopmentDialysis procedureDoctor of PhilosophyEconomicsEducationElectronic Health RecordEnd stage renal failureEnvironmentEvaluationEventFutureGoalsGrantGrowthHealthHeart ArrestHemodialysisHospitalizationHourIndividualInfectionInvestigationKidneyKnowledgeLaboratoriesLengthMachine LearningMaster of Public HealthMeasurementMeasuresMedicalMedicineMentorsMentorshipMethodologyMethodsMetricMindModelingMyocardial InfarctionNational Heart, Lung, and Blood InstituteOutcomeOutpatientsOutputPatientsPatternPharmaceutical PreparationsPhysiologic pulsePlayProcessRecording of previous eventsReportingResearchRiskRisk AssessmentRisk FactorsRoleSensitivity and SpecificitySpecific qualifier valueSystemTechnologyTimeTrainingVariantWorkbasecardiovascular disorder riskcareerclinical carecomputerized toolscostdemographicsdisorder riskhealth information technologyhemodynamicshigh riskimprovedinnovationmemberprofessorprogramspublic health relevancerandomized trialskillssocialstatisticstool
项目摘要
DESCRIPTION (provided by applicant): The purpose of this K25 proposal is to provide Dr. Benjamin Goldstein Ph.D., M.P.H., with the necessary protected time and additional training to develop as an independent, clinical biostatistician. This proposal has two key components: (1) an innovative research plan and (2) a comprehensive training plan. It is well recognized that patients undergoing hemodialysis (HD) are at increased risk of cardiac related events which often prove fatal. While substantive research has identified risk factors for these events, little work has been performed on forecasting their occurrence. The proposed research proposes to use existing electronic health record (EHR) data available through a collaborating dialysis center, DaVita Inc, to derive such a prediction model. EHRs contain detailed information on both a patient's health history (e.g. comorbidities, medications) as well as their evolving health statu (i.e. changes in health). A particularly unique aspect of the DaVita EHR system is the availability
of real-time measures of health (e.g. blood pressure, pulse) available over the course of an HD session. Through our ongoing collaboration we will have data on 10,000s of individuals each with 100s of HD sessions, presenting the opportunity to analyze millions of dialysis sessions. Within this wealth of data two particular questions will be addressed: (1) How does a patient's hemodynamics vary over the course of and across HD sessions? (2) Can we derive a predictor for the near term onset of a cardiac event? To answer question 1, sophisticated statistical methodology, referred to as functional data analysis (FDA), will be utilized. Patterns of hemodynamic measures will be compared during and across HD sessions with key features extracted. For question 2, machine learning methodology will be used to derive a prediction model for the onset of cardiac events. The final aim will be to assess the feasibility of applying such models within a clinical environment. As a Ph.D. biostatistician, Dr. Goldstein has many of the methodological and computational skills necessary to perform the proposed analyses. The proposed methods, while established, also have ample room for statistical investigation and will provide the basis for methodological research. He will be mentored by Dr. Bradley Efron, professor in the Stanford Department of Statistics, and a world recognized expert in statistical methodology. Serving as a consultant will be Drs. Trevor Hastie and John Ioannidis, fellow members of the department of statistics and experts in FDA and prediction evaluation respectively. The focus of Dr. Goldstein's training will be on developing his clinical expertise. This will be performed through a combination of didactic courses, one-on- one tutorials and clinical exposure. Dr. Wolfgang Winkelmayer, a clinical nephrologist and close collaborator of Dr. Goldstein, will supervise Dr. Goldstein's clinical knowledge development. He will be joined by Dr. Mark Hlatky, a research cardiologist, who will also provide mentorship with regards to the cardiac substance of the project. Additional consultants across the department of medicine will be used as needed. The proposed project will have a tremendous impact on Dr. Goldstein's career prospects. At the end of the 5 year period he will have begun the process of developing a research program in the analysis of EHR data. There will be ample avenues to pursue future studies, through the analysis of other predictor variables (e.g. biomarkers, psycho-social factors), outcomes (e.g. hospitalization, cost) and most importantly, implementation of the prediction models in the clinic. The clinical training period will provide him with the necessary background to succeed as a clinically-oriented biostatistician and develop as a leader in the field.
描述(由申请人提供):本K25提案的目的是为Benjamin Goldstein博士提供必要的保护时间和额外的培训,以发展成为一名独立的临床生物统计学家。该提案有两个关键组成部分:(1)创新研究计划和(2)综合培训计划。众所周知,接受血液透析(HD)的患者发生心脏相关事件的风险增加,这些事件往往被证明是致命的。虽然实质性研究已经确定了这些事件的风险因素,但在预测其发生方面所做的工作很少。拟议的研究建议使用通过合作透析中心DaVita Inc提供的现有电子健康记录(EHR)数据来推导这样的预测模型。电子病历包含患者健康史(如合并症、药物)和健康状况演变(如健康变化)的详细信息。DaVita EHR系统的一个特别独特的方面是可用性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Alan Goldstein其他文献
Benjamin Alan Goldstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Alan Goldstein', 18)}}的其他基金
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10656387 - 财政年份:2022
- 资助金额:
$ 3.17万 - 项目类别:
Engaging Multidisciplinary Health System Stakeholders to Create a Process for Implementing Machine-Learning Enabled Clinical Decision Support
让多学科卫生系统利益相关者参与创建实施机器学习支持的临床决策支持的流程
- 批准号:
10451954 - 财政年份:2022
- 资助金额:
$ 3.17万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10605248 - 财政年份:2020
- 资助金额:
$ 3.17万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10598693 - 财政年份:2020
- 资助金额:
$ 3.17万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10192714 - 财政年份:2020
- 资助金额:
$ 3.17万 - 项目类别:
Predictive Analytics in Hemodialysis: Enabling Precision Care for Patient with ESKD
血液透析中的预测分析:为 ESKD 患者提供精准护理
- 批准号:
10414814 - 财政年份:2020
- 资助金额:
$ 3.17万 - 项目类别:
Multifactorial spatiotemporal analyses to evaluate environmental triggers and patient-level clinical characteristics of severe asthma exacerbations in children
多因素时空分析评估儿童严重哮喘急性发作的环境触发因素和患者水平的临床特征
- 批准号:
9884782 - 财政年份:2019
- 资助金额:
$ 3.17万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10698195 - 财政年份:2017
- 资助金额:
$ 3.17万 - 项目类别:
Leveraging routinely collected health data to improve early identification of autism and co-occurring conditions
利用定期收集的健康数据来改善自闭症和并发疾病的早期识别
- 批准号:
10523408 - 财政年份:2017
- 资助金额:
$ 3.17万 - 项目类别:
Understanding and predicting cardiac events in HD using real-time EHRs
使用实时 EHR 了解和预测 HD 中的心脏事件
- 批准号:
8425985 - 财政年份:2013
- 资助金额:
$ 3.17万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 3.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Operating Grants