Novel Quality Measures for Primary Care Management of Attention-Deficit/Hyperactivity Disorder
注意力缺陷/多动障碍初级保健管理的新质量措施
基本信息
- 批准号:10525048
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcademyAdoptionAffectAlgorithmsAmericanAreaAttention deficit hyperactivity disorderBehavior DisordersBehavior TherapyCaringCharacteristicsChildChild CareChild HealthChild Mental HealthChild health careChildhoodClinical Practice GuidelineClinical ResearchCodeCollaborationsCommunitiesConsolidated Framework for Implementation ResearchConsumptionDataDevelopmentDiagnosisDiagnosticDisease ManagementElectronic Health RecordEnvironmentEthnic OriginEvidence based practiceFamilyFeedbackFundingFutureGoalsGuidelinesHealthHealth PersonnelHealth ServicesHealth TechnologyHealthcareHealthcare SystemsHouseholdHybridsIndividualInstitutesInsuranceInterventionInterviewLanguageLeadLifeMachine LearningManualsMeasurementMeasuresMedicalMental HealthMental disordersMentorsMethodsModelingMonitorMorbidity - disease rateNational Institute of Mental HealthNatural Language ProcessingNatural Language Processing pipelineOutcomePatient-Focused OutcomesPatientsPediatricsPerformancePharmaceutical PreparationsPhysiciansPopulationPositioning AttributePrimary Health CareProcessPublishingQualitative MethodsQuality IndicatorQuality of CareRaceRecommendationReduce health disparitiesResearchSamplingScientistStandardizationStrategic PlanningStructureSubgroupSystemTechniquesTextTimeTrainingVariantWorkagedbasebehavioral healthcare deliverycare providerscareerclinical carecostdesigndevelopmental diseaseelectronic structureevidence baseevidence based guidelinesexperiencehealth care disparityhealth care service organizationimplementation scienceimprovedmachine learning methodmachine learning modelmaltreatmentmultidisciplinaryneurobehavioral disordernew technologynovelovertreatmentpatient populationprimary care settingprovider adherenceside effectskillssociodemographic disparitystatisticsstructured datasuccesssupport toolsunnecessary treatment
项目摘要
PROJECT SUMMARY / ABSTRACT
Attention-Deficit/Hyperactivity Disorder (ADHD) affects 8-10% of US children. Primary care providers (PCPs)
care for most children with ADHD but quality gaps in ADHD treatment, with sociodemographic disparities as a
potential driver, may lead to life-long morbidity and/or unnecessary treatments. There is an urgent need to
develop quality measures for ADHD treatment, as a prerequisite for mitigating disparities and improving health
outcomes. The objective of this proposal is to leverage recent advances in machine learning (ML) methods –
enabling the analysis of electronic health record (EHR) data of an entire patient population – to develop robust
quality measures for ADHD treatment, and to prepare for quality improvement interventions. This K23 proposal
will accelerate Dr. Bannett’s transition into an independent physician scientist, towards his long-term goal to
improve community-based primary health care for children with developmental and behavioral disorders. His
multidisciplinary team of mentors include Heidi Feldman (ADHD research mentor), C. Jason Wang (health care
technology & health services co-mentor), and Grace Lee (quality improvement & implementation science co-
mentor). This nationally recognized team of physician scientists will assure Dr. Bannett achieves his goals, to
(1) apply machine learning techniques to assess quality of care while mitigating bias, (2) advance research
skills in advanced statistics and in qualitative methods, (3) build expertise in quality improvement and
implementation science methods, and (4) enhance professional skills and transition to independence. Dr.
Bannett’s clinical and research experiences, his mentoring team, and the environment at Stanford, position him
to achieve the proposal’s aims. Building upon his experiences in analyzing EHR data and successes in piloting
a natural language processing pipeline, Dr. Bannett has the following specific aims: (1) to develop guideline-
based quality measures that combine ML analysis of free text with structured EHR data to assess PCP
treatment of children aged 4-11 years with ADHD, (2) to assess PCP adherence to evidence-based guidelines
for ADHD treatment and to detect disparities in care and minimize related bias in ML models, (3) to prioritize
quality improvement interventions aimed at improving ADHD care and mitigating disparities that family and
clinician stakeholders consider feasible, acceptable, and important. Aligned with the NIMH’s strategic plan, this
proposal will (1) strengthen collaboration between stakeholders to continuously improve evidence-based
practices in primary care settings, (2) identify and prioritize targets for planned PCP- and systems-level quality
improvement interventions aimed at standardizing ADHD care and mitigating disparities, and (3) apply novel
technologies that provide real-time feedback and continuous monitoring of high-quality ADHD care. With future
R01 funding, Dr. Bannett will cross-validate developed quality measures in a national network of pediatric
healthcare systems, and, in parallel, implement data-driven quality improvement interventions.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yair Bannett其他文献
Yair Bannett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yair Bannett', 18)}}的其他基金
Novel Quality Measures for Primary Care Management of Attention-Deficit/Hyperactivity Disorder
注意力缺陷/多动障碍初级保健管理的新质量措施
- 批准号:
10686112 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant














{{item.name}}会员




