Novel Quality Measures for Primary Care Management of Attention-Deficit/Hyperactivity Disorder
注意力缺陷/多动障碍初级保健管理的新质量措施
基本信息
- 批准号:10686112
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcademyAccelerationAdoptionAffectAlgorithmsAmericanAreaAttention deficit hyperactivity disorderBehavior DisordersBehavior TherapyCaringCharacteristicsChildChild CareChild HealthChild Mental HealthChild health careChildhoodClassificationClinicalClinical Practice GuidelineCodeCollaborationsCommunitiesConsolidated Framework for Implementation ResearchConsumptionDataDevelopmentDiagnosisDiagnosticDisparityElectronic Health RecordEnvironmentEquityEthnic OriginEvidence based practiceFamilyFeedbackFundingFutureGoalsGuidelinesHealthHealth PersonnelHealth ServicesHealth TechnologyHealthcareHealthcare SystemsHouseholdHybridsIndividualInsuranceInterventionInterviewLanguageMachine LearningManaged CareManualsMeasurementMeasuresMedicalMental HealthMental disordersMentorsMethodsModelingMonitorMorbidity - disease rateNational Institute of Mental HealthNatural Language ProcessingNatural Language Processing pipelineOutcomePatient-Focused OutcomesPatientsPediatricsPerformancePharmaceutical PreparationsPhysiciansPopulationPositioning AttributePrimary CarePrimary Health CareProcessPublishingQualitative MethodsQuality IndicatorQuality of CareRaceRecommendationReduce health disparitiesResearchSamplingScientistStandardizationStrategic PlanningStructureSubgroupSystemTechniquesTextTimeTrainingVariantWorkacceptability and feasibilityagedbehavioral healthcare deliverycare providerscareerclinical carecostdesigndevelopmental diseasedisparity reductionelectronic structureevidence baseevidence based guidelinesexperiencehealth care disparityhealth care service organizationimplementation scienceimprovedlearning engagementmachine learning methodmachine learning modelmaltreatmentmultidisciplinaryneurobehavioral disordernew technologynovelovertreatmentpatient populationprimary care providerprimary care settingprovider adherenceside effectskillssociodemographic disparitystatisticsstructured datasuccesssupport toolsunnecessary treatment
项目摘要
PROJECT SUMMARY / ABSTRACT
Attention-Deficit/Hyperactivity Disorder (ADHD) affects 8-10% of US children. Primary care providers (PCPs)
care for most children with ADHD but quality gaps in ADHD treatment, with sociodemographic disparities as a
potential driver, may lead to life-long morbidity and/or unnecessary treatments. There is an urgent need to
develop quality measures for ADHD treatment, as a prerequisite for mitigating disparities and improving health
outcomes. The objective of this proposal is to leverage recent advances in machine learning (ML) methods –
enabling the analysis of electronic health record (EHR) data of an entire patient population – to develop robust
quality measures for ADHD treatment, and to prepare for quality improvement interventions. This K23 proposal
will accelerate Dr. Bannett’s transition into an independent physician scientist, towards his long-term goal to
improve community-based primary health care for children with developmental and behavioral disorders. His
multidisciplinary team of mentors include Heidi Feldman (ADHD research mentor), C. Jason Wang (health care
technology & health services co-mentor), and Grace Lee (quality improvement & implementation science co-
mentor). This nationally recognized team of physician scientists will assure Dr. Bannett achieves his goals, to
(1) apply machine learning techniques to assess quality of care while mitigating bias, (2) advance research
skills in advanced statistics and in qualitative methods, (3) build expertise in quality improvement and
implementation science methods, and (4) enhance professional skills and transition to independence. Dr.
Bannett’s clinical and research experiences, his mentoring team, and the environment at Stanford, position him
to achieve the proposal’s aims. Building upon his experiences in analyzing EHR data and successes in piloting
a natural language processing pipeline, Dr. Bannett has the following specific aims: (1) to develop guideline-
based quality measures that combine ML analysis of free text with structured EHR data to assess PCP
treatment of children aged 4-11 years with ADHD, (2) to assess PCP adherence to evidence-based guidelines
for ADHD treatment and to detect disparities in care and minimize related bias in ML models, (3) to prioritize
quality improvement interventions aimed at improving ADHD care and mitigating disparities that family and
clinician stakeholders consider feasible, acceptable, and important. Aligned with the NIMH’s strategic plan, this
proposal will (1) strengthen collaboration between stakeholders to continuously improve evidence-based
practices in primary care settings, (2) identify and prioritize targets for planned PCP- and systems-level quality
improvement interventions aimed at standardizing ADHD care and mitigating disparities, and (3) apply novel
technologies that provide real-time feedback and continuous monitoring of high-quality ADHD care. With future
R01 funding, Dr. Bannett will cross-validate developed quality measures in a national network of pediatric
healthcare systems, and, in parallel, implement data-driven quality improvement interventions.
项目概要/摘要
8-10% 的美国儿童患有注意力缺陷/多动症 (ADHD)。初级保健提供者 (PCP)
照顾大多数患有多动症的儿童,但多动症治疗的质量存在差距,社会人口统计学差异是
潜在的驱动因素,可能导致终生发病和/或不必要的治疗。迫切需要
制定多动症治疗的质量措施,作为缩小差距和改善健康的先决条件
结果。该提案的目标是利用机器学习 (ML) 方法的最新进展 –
能够分析整个患者群体的电子健康记录 (EHR) 数据 – 开发强大的
ADHD 治疗的质量措施,并为质量改进干预措施做好准备。这个K23提案
将加速 Bannett 博士向独立医师科学家的转变,实现他的长期目标
改善针对患有发育和行为障碍的儿童的社区初级卫生保健。他的
多学科导师团队包括 Heidi Feldman(多动症研究导师)、C. Jason Wang(医疗保健)
技术与健康服务联合导师)和 Grace Lee(质量改进与实施科学联合导师)
导师)。这个全国公认的医师科学家团队将确保班尼特博士实现他的目标,
(1) 应用机器学习技术评估护理质量,同时减少偏见,(2) 推进研究
高级统计和定性方法方面的技能,(3) 建立质量改进方面的专业知识和
实施科学方法,以及(4)提高专业技能并过渡到独立。博士。
班尼特的临床和研究经验、他的指导团队以及斯坦福大学的环境使他处于有利地位
以实现提案的目标。基于他分析 EHR 数据的经验和试点的成功
Bannett 博士的自然语言处理流程有以下具体目标:(1)制定指南-
基于质量措施,将自由文本的 ML 分析与结构化 EHR 数据相结合来评估 PCP
治疗 4-11 岁 ADHD 儿童,(2) 评估 PCP 遵守循证指南的情况
用于 ADHD 治疗并检测护理差异并最大程度地减少 ML 模型中的相关偏差,(3) 确定优先级
质量改进干预措施旨在改善多动症护理并减少家庭和家庭之间的差异
临床医生利益相关者认为可行、可接受且重要。与 NIMH 的战略计划相一致,
提案将 (1) 加强利益相关者之间的合作,不断改进基于证据的
初级保健机构的实践,(2) 确定计划的 PCP 和系统级质量目标并确定优先顺序
旨在标准化多动症护理和减少差异的改进干预措施,以及(3)应用新的
提供实时反馈和持续监测高质量多动症护理的技术。与未来
班尼特博士将在 R01 资助下,在全国儿科网络中交叉验证制定的质量措施
医疗保健系统,同时实施数据驱动的质量改进干预措施。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yair Bannett其他文献
Yair Bannett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yair Bannett', 18)}}的其他基金
Novel Quality Measures for Primary Care Management of Attention-Deficit/Hyperactivity Disorder
注意力缺陷/多动障碍初级保健管理的新质量措施
- 批准号:
10525048 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




