Novel Quality Measures for Primary Care Management of Attention-Deficit/Hyperactivity Disorder
注意力缺陷/多动障碍初级保健管理的新质量措施
基本信息
- 批准号:10686112
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcademyAccelerationAdoptionAffectAlgorithmsAmericanAreaAttention deficit hyperactivity disorderBehavior DisordersBehavior TherapyCaringCharacteristicsChildChild CareChild HealthChild Mental HealthChild health careChildhoodClassificationClinicalClinical Practice GuidelineCodeCollaborationsCommunitiesConsolidated Framework for Implementation ResearchConsumptionDataDevelopmentDiagnosisDiagnosticDisparityElectronic Health RecordEnvironmentEquityEthnic OriginEvidence based practiceFamilyFeedbackFundingFutureGoalsGuidelinesHealthHealth PersonnelHealth ServicesHealth TechnologyHealthcareHealthcare SystemsHouseholdHybridsIndividualInsuranceInterventionInterviewLanguageMachine LearningManaged CareManualsMeasurementMeasuresMedicalMental HealthMental disordersMentorsMethodsModelingMonitorMorbidity - disease rateNational Institute of Mental HealthNatural Language ProcessingNatural Language Processing pipelineOutcomePatient-Focused OutcomesPatientsPediatricsPerformancePharmaceutical PreparationsPhysiciansPopulationPositioning AttributePrimary CarePrimary Health CareProcessPublishingQualitative MethodsQuality IndicatorQuality of CareRaceRecommendationReduce health disparitiesResearchSamplingScientistStandardizationStrategic PlanningStructureSubgroupSystemTechniquesTextTimeTrainingVariantWorkacceptability and feasibilityagedbehavioral healthcare deliverycare providerscareerclinical carecostdesigndevelopmental diseasedisparity reductionelectronic structureevidence baseevidence based guidelinesexperiencehealth care disparityhealth care service organizationimplementation scienceimprovedlearning engagementmachine learning methodmachine learning modelmaltreatmentmultidisciplinaryneurobehavioral disordernew technologynovelovertreatmentpatient populationprimary care providerprimary care settingprovider adherenceside effectskillssociodemographic disparitystatisticsstructured datasuccesssupport toolsunnecessary treatment
项目摘要
PROJECT SUMMARY / ABSTRACT
Attention-Deficit/Hyperactivity Disorder (ADHD) affects 8-10% of US children. Primary care providers (PCPs)
care for most children with ADHD but quality gaps in ADHD treatment, with sociodemographic disparities as a
potential driver, may lead to life-long morbidity and/or unnecessary treatments. There is an urgent need to
develop quality measures for ADHD treatment, as a prerequisite for mitigating disparities and improving health
outcomes. The objective of this proposal is to leverage recent advances in machine learning (ML) methods –
enabling the analysis of electronic health record (EHR) data of an entire patient population – to develop robust
quality measures for ADHD treatment, and to prepare for quality improvement interventions. This K23 proposal
will accelerate Dr. Bannett’s transition into an independent physician scientist, towards his long-term goal to
improve community-based primary health care for children with developmental and behavioral disorders. His
multidisciplinary team of mentors include Heidi Feldman (ADHD research mentor), C. Jason Wang (health care
technology & health services co-mentor), and Grace Lee (quality improvement & implementation science co-
mentor). This nationally recognized team of physician scientists will assure Dr. Bannett achieves his goals, to
(1) apply machine learning techniques to assess quality of care while mitigating bias, (2) advance research
skills in advanced statistics and in qualitative methods, (3) build expertise in quality improvement and
implementation science methods, and (4) enhance professional skills and transition to independence. Dr.
Bannett’s clinical and research experiences, his mentoring team, and the environment at Stanford, position him
to achieve the proposal’s aims. Building upon his experiences in analyzing EHR data and successes in piloting
a natural language processing pipeline, Dr. Bannett has the following specific aims: (1) to develop guideline-
based quality measures that combine ML analysis of free text with structured EHR data to assess PCP
treatment of children aged 4-11 years with ADHD, (2) to assess PCP adherence to evidence-based guidelines
for ADHD treatment and to detect disparities in care and minimize related bias in ML models, (3) to prioritize
quality improvement interventions aimed at improving ADHD care and mitigating disparities that family and
clinician stakeholders consider feasible, acceptable, and important. Aligned with the NIMH’s strategic plan, this
proposal will (1) strengthen collaboration between stakeholders to continuously improve evidence-based
practices in primary care settings, (2) identify and prioritize targets for planned PCP- and systems-level quality
improvement interventions aimed at standardizing ADHD care and mitigating disparities, and (3) apply novel
technologies that provide real-time feedback and continuous monitoring of high-quality ADHD care. With future
R01 funding, Dr. Bannett will cross-validate developed quality measures in a national network of pediatric
healthcare systems, and, in parallel, implement data-driven quality improvement interventions.
项目总结/摘要
注意力缺陷多动障碍(ADHD)影响8-10%的美国儿童。初级保健提供者(PCP)
照顾大多数患有ADHD的儿童,但ADHD治疗的质量差距,社会人口差异作为
潜在驱动因素,可能导致终身发病和/或不必要的治疗。迫切需要
制定ADHD治疗的质量措施,作为减少差异和改善健康的先决条件
结果。该提案的目的是利用机器学习(ML)方法的最新进展-
能够分析整个患者群体的电子健康记录(EHR)数据,
ADHD治疗的质量措施,并为质量改进干预措施做好准备。K23提案
这将加速Bannett博士向独立医生科学家的转变,实现他的长期目标,
改善以社区为基础的对发育和行为失常儿童的初级保健。他
多学科的导师团队包括海蒂费尔德曼(多动症研究导师),C。Jason Wang(医疗保健
技术和健康服务共同导师)和Grace Lee(质量改进和实施科学共同导师),
导师)。这个全国公认的医生科学家团队将确保Bannett博士实现他的目标,
(1)应用机器学习技术评估护理质量,同时减轻偏见,(2)推进研究
在先进的统计和定性方法的技能,(3)建立在质量改进的专业知识,
实施科学方法;(4)提高专业技能,向独立性过渡。博士
Bannett的临床和研究经验,他的指导团队,以及斯坦福大学的环境,使他处于有利地位
以实现提案的目标。根据他在分析电子健康记录数据和试点成功方面的经验,
作为一个自然语言处理管道,Bannett博士有以下具体目标:(1)制定指导方针-
结合联合收割机对自由文本的ML分析和结构化EHR数据来评估PCP的质量度量
治疗4-11岁ADHD儿童,(2)评估PCP对循证指南的依从性
用于ADHD治疗,检测护理差异并最大限度地减少ML模型中的相关偏见,(3)优先考虑
质量改善干预措施,旨在改善ADHD护理和减轻家庭和
临床医生利益相关者认为可行、可接受和重要。根据NIMH的战略计划,
建议将(1)加强利益攸关方之间的合作,以不断改进基于证据的
初级保健环境中的实践,(2)确定计划的PCP和系统级质量目标并确定优先顺序
改善干预措施,旨在规范ADHD护理和减轻差异,(3)应用新的
提供高质量ADHD护理的实时反馈和持续监测的技术。与未来
R 01资金,Bannett博士将在全国儿科网络中交叉验证开发的质量措施。
医疗保健系统,并同时实施数据驱动的质量改进干预措施。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yair Bannett其他文献
Yair Bannett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yair Bannett', 18)}}的其他基金
Novel Quality Measures for Primary Care Management of Attention-Deficit/Hyperactivity Disorder
注意力缺陷/多动障碍初级保健管理的新质量措施
- 批准号:
10525048 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant














{{item.name}}会员




