Defining mechanisms of PKR activation and evasion during Adenovirus infection
腺病毒感染期间 PKR 激活和逃避的定义机制
基本信息
- 批准号:10535732
- 负责人:
- 金额:$ 3.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-06 至 2025-09-05
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenovirus InfectionsAdenovirusesAntiviral ResponseAwardBindingBiochemicalBioinformaticsBiologyCellsClinicalCommunitiesCyclic AMP-Dependent Protein KinasesDNA Virus InfectionsDNA VirusesDataDefectDouble-Stranded RNAEnvironmentGeneticGenetic TranscriptionInfectionLabelLigaseMessenger RNAModelingMolecularNuclearPRKR genePatternPediatric HospitalsPennsylvaniaPhiladelphiaPlayPositioning AttributeProcessProtein KinaseProteinsProteomicsRNARNA SplicingResearchResolutionRoleSentinelSpliceosomesTimeTrainingTranscriptTranslationsUniversitiesViralViral GenomeVirusVirus DiseasesWorkclinically significantdefense responsehuman pathogenimage processinginhibitorknock-downmicroscopic imagingmutantnovelnuclear factor of activated T-cells, 90 kDpathogenprotein activationprotein kinase inhibitorresearch studysensorubiquitin ligase
项目摘要
Host cells have evolved an array of sensors to detect pathogen-associated molecular patterns and activate defense responses. Protein Kinase RNA-activated (PKR) is a key sensor of double-stranded RNA (dsRNA) produced by viruses and is vital for protection against human pathogens. Activated PKR halts global protein translation to limit virus infection. Since many DNA viruses antagonize PKR, it has been presumed that they produce dsRNA. Indeed, PKR is activated upon infection with mutant viruses lacking a PKR inhibitor. It has been suggested that transcription from both strands of compact DNA virus genomes generates dsRNA. However, there is limited direct evidence this occurs. This proposal addresses gaps in our understanding of how the critical antiviral sensor PKR is activated during DNA virus infection. Using the important clinical pathogen human adenovirus (AdV) as our model, we could not detect dsRNA during infection with wildtype (WT) or mutant virus lacking the well-characterized PKR inhibitor VA RNA (f:..VA). However, infection with ubiquitin ligase-deficient (f:..E4) AdV mutants produced abundant nuclear dsRNA composed of poorly processed viral transcripts and activated PKR despite adequate VA RNA expression. Among the substrates of the viral ligase is a spliceosome protein hnRNPC, targeted to promote efficient splicing of viral late mRNAs. Knockdown of hnRNPC reduced dsRNA accumulation and PKR activation. Similarly, my preliminary data reveal a novel role for the host protein NF90 in regulating PKR activation during f:..VA infection. Together, these data suggest PKR may be activated independently of its canonical activator dsRNA during AdV infection. The objective of the proposal is to define the role that hnRNPC and NF90 play in PKR activation during f:..VA infection. I propose to validate the interaction between these proteins and PKR by co-IP. Expression and localization of both proteins will be tracked over a time course of f:..VA infection and changes correlated with the timing of PKR activation. Knockdown (KO) of each protein will be used to examine activation of PKR during f:..VA infection and to check for rescue from defects in viral late mRNA accumulation or splicing. CLIP-qPCR will be used to probe for binding to VA RNA and viral mRNAs. I will also examine impacts on protein translation of viral mRNAs using HPG labeling of nascent proteins. Results of this proposal will delineate the antiviral function of NF90 during AdV infection, expand our understanding of VA RNA's pro-viral roles, and redefine our understanding of PKR activation during f:..VA infection with broader implications for other nuclear-replicating DNA viruses. This work will take place in the collaborative and interdisciplinary training environment provided by the Weitzman lab and the integrated research communities of both the Children's Hospital of Philadelphia and the University of Pennsylvania. I am uniquely positioned to perform these studies in the Weitzman lab where I will gain hands-on training in proteomics, RNA biology, and high-resolution microscopy and image processing. This training award will leave me poised for my future research studying how viruses overcome host antiviral responses.
宿主细胞已经进化出一系列传感器来检测病原体相关的分子模式并激活防御反应。蛋白激酶RNA激活(PKR)是病毒产生的双链RNA(dsRNA)的关键传感器,对于保护人类免受病原体的侵害至关重要。激活的PKR停止整体蛋白质翻译以限制病毒感染。由于许多DNA病毒拮抗PKR,因此推测它们产生dsRNA。事实上,PKR在感染缺乏PKR抑制剂的突变病毒后被激活。已经提出,从紧凑DNA病毒基因组的两条链转录产生dsRNA。然而,这种情况的直接证据有限。该提案解决了我们对关键抗病毒传感器PKR在DNA病毒感染期间如何被激活的理解中的差距。使用重要的临床病原体人腺病毒(AdV)作为我们的模型,我们在用野生型(WT)或缺乏充分表征的PKR抑制剂VA RNA的突变病毒感染期间不能检测到dsRNA(f:... VA)。然而,感染泛素连接酶缺陷型(f:.. E4)AdV突变体产生丰富的由加工不良的病毒转录物组成的核dsRNA,并且尽管有足够的VA RNA表达,但仍激活PKR。在病毒连接酶的底物中有一种剪接体蛋白hnRNPC,靶向促进病毒晚期mRNA的有效剪接。hnRNPC的敲低降低了dsRNA积累和PKR活化。类似地,我的初步数据揭示了宿主蛋白NF 90在f:.. VA感染。总之,这些数据表明PKR在AdV感染期间可能独立于其典型激活剂dsRNA被激活。该提案的目的是确定hnRNPC和NF 90在F:..期间PKR激活中的作用。VA感染。我建议通过co-IP验证这些蛋白质与PKR之间的相互作用。两种蛋白质的表达和定位将在f:..的时间过程中跟踪。VA感染和变化与PKR激活的时间相关。将使用每种蛋白质的敲低(KO)来检查f:. VA感染,并检查从病毒晚期mRNA积累或剪接缺陷中的拯救。CLIP-qPCR将用于探测与VA RNA和病毒mRNA的结合。我还将研究使用新生蛋白的HPG标记对病毒mRNA的蛋白质翻译的影响。该提案的结果将描述NF 90在AdV感染过程中的抗病毒功能,扩展我们对VA RNA的前病毒作用的理解,并重新定义我们对F:VA感染对其他核复制DNA病毒具有更广泛的影响。这项工作将在韦茨曼实验室和费城儿童医院和宾夕法尼亚大学的综合研究社区提供的协作和跨学科培训环境中进行。我在Weitzman实验室进行这些研究是独一无二的,在那里我将获得蛋白质组学,RNA生物学,高分辨率显微镜和图像处理方面的实践培训。这个培训奖将使我为我未来的研究做好准备,研究病毒如何克服宿主的抗病毒反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Theodore Steinbock其他文献
Robert Theodore Steinbock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Theodore Steinbock', 18)}}的其他基金
Defining mechanisms of PKR activation and evasion during Adenovirus infection
腺病毒感染期间 PKR 激活和逃避的定义机制
- 批准号:
10752610 - 财政年份:2022
- 资助金额:
$ 3.43万 - 项目类别:
相似海外基金
RNA interference based therapies for treatment of adenovirus infections in immunosuppressed host
基于 RNA 干扰的疗法用于治疗免疫抑制宿主的腺病毒感染
- 批准号:
211658021 - 财政年份:2012
- 资助金额:
$ 3.43万 - 项目类别:
Research Grants
ASSESSING THE PREVALENCE OF THE BK, CMV, & ADENOVIRUS INFECTIONS IN PED PTS
评估 BK、CMV 的患病率
- 批准号:
7716731 - 财政年份:2008
- 资助金额:
$ 3.43万 - 项目类别:
ASSESSING THE PREVALENCE OF THE BK, CMV, & ADENOVIRUS INFECTIONS IN PED PTS
评估 BK、CMV 的患病率
- 批准号:
7982151 - 财政年份:2008
- 资助金额:
$ 3.43万 - 项目类别:
ASSESSING THE PREVALENCE OF THE BK, CMV, & ADENOVIRUS INFECTIONS IN PED PTS
评估 BK、CMV 的患病率
- 批准号:
7603956 - 财政年份:2006
- 资助金额:
$ 3.43万 - 项目类别:
Immunotherapy of Adenovirus Infections in Stem Cell Transplnt Recipients
干细胞移植受体中腺病毒感染的免疫治疗
- 批准号:
7337161 - 财政年份:2006
- 资助金额:
$ 3.43万 - 项目类别:
Immunotherapy of Adenovirus Infections in Stem Cell Transplant Recipients
干细胞移植受者腺病毒感染的免疫治疗
- 批准号:
7167150 - 财政年份:2006
- 资助金额:
$ 3.43万 - 项目类别:
Immunotherapy of Adenovirus Infections in Stem Cell Transplnt Recipients
干细胞移植受体中腺病毒感染的免疫治疗
- 批准号:
7020895 - 财政年份:2006
- 资助金额:
$ 3.43万 - 项目类别:
Immunotherapy of Adenovirus Infections in Stem Cell Transplnt Recipients
干细胞移植受体中腺病毒感染的免疫治疗
- 批准号:
7545814 - 财政年份:2006
- 资助金额:
$ 3.43万 - 项目类别:
ASSESSING THE PREVALENCE OF THE BK, CMV, & ADENOVIRUS INFECTIONS IN PED PTS
评估 BK、CMV 的患病率
- 批准号:
7368241 - 财政年份:2005
- 资助金额:
$ 3.43万 - 项目类别:
National Surveillance for Emerging Adenovirus Infections
新发腺病毒感染的国家监测
- 批准号:
6899378 - 财政年份:2004
- 资助金额:
$ 3.43万 - 项目类别: