Microprotein Regulation of Mitochondrial Function
线粒体功能的微生物蛋白调节
基本信息
- 批准号:10531907
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBindingBioenergeticsBiological AssayBiologyCalciumCarbohydratesCardiacCardiac MyocytesCardiac healthCardiovascular DiseasesCell RespirationClinicalCodeComplexComputer AnalysisDataDiseaseDisease modelElectron TransportElectron Transport Complex IIIEquilibriumEtiologyEventExperimental ModelsFractionationGene DeletionGenerationsGenesGlucoseGoalsHeartHeart DiseasesHeart MitochondriaHeart failureHomeostasisImpairmentInner mitochondrial membraneKnockout MiceLinkMeasuresMembraneMetabolicMetabolismMethodsMitochondriaMolecularMolecular Mechanisms of ActionMultiprotein ComplexesMusMuscle CellsMyocardialMyocardial IschemiaNamesNeonatalOpen Reading FramesOutcomeOutputOxidation-ReductionPeptidesPerformancePhysiologicalPlayProcessProtein ImportProteinsPumpRattusRegulationResearchRespirationRoleSeriesSignal TransductionStressSyndromeTestingTherapeuticTransgenic MiceTranslational RepressionVascular blood supplyVentricularViruscandidate identificationcardioprotectionexperimental analysisfatty acid oxidationgain of functionglucose metabolismheart functionheart metabolismin vitro Assayin vivoinsightlink proteinlong chain fatty acidloss of functionmammalian genomemitochondrial dysfunctionmitochondrial membranemouse modelnovelnovel strategiesoverexpressionoxidationpressureprotein complexrecruitreduce symptomsrespiratoryresponsesmall hairpin RNAsymptom treatmenttherapeutic target
项目摘要
Project Summary
Heart failure is a complex clinical syndrome that is driven by impaired myocardial contractile
performance. Several metabolic alterations contribute to heart failure, including mitochondrial
dysfunction and changes in cardiac substrate utilization, resulting in energy deficiency and
reduced cardiomyocyte contractility. Current therapies for heart failure treat the symptoms rather
than the mechanisms underlying the etiology of the disease and are unable to reverse the
molecular changes that occur in diseased cardiomyocytes. Developing novel approaches to
enhance mitochondrial function and modulate cardiac metabolism in heart failure is a promising
approach towards correcting myocardial energetics to restore heart function. Despite the central
role that mitochondria play in cardiac health and disease, we are still lacking critical insight into
how many fundamental mitochondrial processes are regulated at the molecular level. Recent
computational and experimental data suggest that the mammalian genome contains thousands
of previously overlooked small proteins called microproteins, and hundreds of these have been
linked to the mitochondria where they are thought to play important roles as regulatory molecules.
Examples of mitochondrial microproteins (MitoMPs) have been shown to regulate essential
mitochondrial processes including cellular respiration, substrate utilization, metabolism and stress
signaling. MitoMPs typically manifest their functions by binding to and regulating larger protein
partners or multiprotein complexes within membrane domains. In line with this, we recently
discovered 2 novel MitoMPs named MOXI (micropeptide regulator of b-oxidation) and
mitolamban, which each interact with discrete metabolic regulatory complexes to perform distinct
functions. MOXI plays a critical role in regulating long chain fatty acid oxidation, likely through a
direct interaction with the mitochondrial trifunctional protein (MTP), while mitolamban interacts
with complex III of the electron transport chain and contributes to complex assembly and function.
Here we propose a comprehensive research plan to dissect the molecular mechanisms of action
of MOXI (Aim 1) and mitolamban (Aim 2) in the heart using gain- and loss-of-function mouse
models. Additionally, we aim to evaluate their potential as therapeutic targets using experimental
models of heart failure and ischemic heart disease. Furthermore, towards the goal of gaining a
more complete understanding of mitochondrial biology in the heart, we propose the functional
analysis of 3 newly identified MitoMPs (Aim 3). We hypothesize that these microproteins play
unique roles in regulating distinct aspects of mitochondrial function and metabolism and that their
functional characterization could give rise to novel targets for heart failure therapeutics.
Project Summary
Heart failure is a complex clinical syndrome that is driven by impaired myocardial contractile
performance. Several metabolic alterations contribute to heart failure, including mitochondrial
dysfunction and changes in cardiac substrate utilization, resulting in energy deficiency and
reduced cardiomyocyte contractility. Current therapies for heart failure treat the symptoms rather
than the mechanisms underlying the etiology of the disease and are unable to reverse the
molecular changes that occur in diseased cardiomyocytes. Developing novel approaches to
enhance mitochondrial function and modulate cardiac metabolism in heart failure is a promising
approach towards correcting myocardial energetics to restore heart function. Despite the central
role that mitochondria play in cardiac health and disease, we are still lacking critical insight into
how many fundamental mitochondrial processes are regulated at the molecular level. Recent
computational and experimental data suggest that the mammalian genome contains thousands
of previously overlooked small proteins called microproteins, and hundreds of these have been
linked to the mitochondria where they are thought to play important roles as regulatory molecules.
Examples of mitochondrial microproteins (MitoMPs) have been shown to regulate essential
mitochondrial processes including cellular respiration, substrate utilization, metabolism and stress
signaling. MitoMPs typically manifest their functions by binding to and regulating larger protein
partners or multiprotein complexes within membrane domains. In line with this, we recently
discovered 2 novel MitoMPs named MOXI (micropeptide regulator of b-oxidation) and
mitolamban, which each interact with discrete metabolic regulatory complexes to perform distinct
functions. MOXI plays a critical role in regulating long chain fatty acid oxidation, likely through a
direct interaction with the mitochondrial trifunctional protein (MTP), while mitolamban interacts
with complex III of the electron transport chain and contributes to complex assembly and function.
Here we propose a comprehensive research plan to dissect the molecular mechanisms of action
of MOXI (Aim 1) and mitolamban (Aim 2) in the heart using gain- and loss-of-function mouse
models. Additionally, we aim to evaluate their potential as therapeutic targets using experimental
models of heart failure and ischemic heart disease. Furthermore, towards the goal of gaining a
more complete understanding of mitochondrial biology in the heart, we propose the functional
analysis of 3 newly identified MitoMPs (Aim 3). We hypothesize that these microproteins play
unique roles in regulating distinct aspects of mitochondrial function and metabolism and that their
functional characterization could give rise to novel targets for heart failure therapeutics.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine A Makarewich其他文献
Catherine A Makarewich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine A Makarewich', 18)}}的其他基金
Dissecting the role of novel calcium regulatory proteins in the cardiovascular system
剖析新型钙调节蛋白在心血管系统中的作用
- 批准号:
10337185 - 财政年份:2018
- 资助金额:
$ 39.75万 - 项目类别:
Dissecting the role of novel calcium regulatory proteins in the cardiovascular system
剖析新型钙调节蛋白在心血管系统中的作用
- 批准号:
9505666 - 财政年份:2018
- 资助金额:
$ 39.75万 - 项目类别:
Dissecting the role of novel calcium regulatory proteins in the cardiovascular system
剖析新型钙调节蛋白在心血管系统中的作用
- 批准号:
10055197 - 财政年份:2018
- 资助金额:
$ 39.75万 - 项目类别:
Elucidation of the Role of a Novel Cardiac Micropeptide in the Control of Heart Function and Dysfunction
阐明新型心脏微肽在控制心脏功能和功能障碍中的作用
- 批准号:
8982744 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
Elucidation of the Role of a Novel Cardiac Micropeptide in the Control of Heart Function and Dysfunction
阐明新型心脏微肽在控制心脏功能和功能障碍中的作用
- 批准号:
9205181 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Discovery Projects














{{item.name}}会员




