Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
基本信息
- 批准号:10531928
- 负责人:
- 金额:$ 67.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:ASIC channelAcuteAddressAreaAstrocytesAutomobile DrivingBlood VesselsBlood flowBrainBrain regionCannulationsCardiometabolic DiseaseCardiovascular DiseasesCellsCharacteristicsChronicDataDiseaseDorsalElectrophysiology (science)FeedbackFunctional disorderGlucoseGlutamate TransporterHealthHeart failureHomeostasisHypertensionHypothalamic structureHypovolemiaHypovolemicsHypoxiaImageIsotonic ExerciseKnowledgeLinkMasksMeasurementMeasuresMediatingModalityModelingMolecular TargetMonitorNeuronsNeuropeptidesNeurosecretory SystemsNitric OxideOperative Surgical ProceduresPathologicPeripheralPhysiologicalPhysiological ProcessesPopulationProcessRat TransgeneRegulationResponse to stimulus physiologyRodent ModelRoleSensorySignal TransductionSodium ChlorideStimulusSystemTechniquesTimeTissuesVasodilationVasopressinsViral VectorVisualizationWorkadeno-associated viral vectorarteriolecellular targetingdesigner receptors exclusively activated by designer drugshypoperfusionin vivoinnovationinterdisciplinary approachneurotransmissionneurovascular couplingnovelnovel strategiespatch clamppharmacologicresponsesupraoptic nucleustherapeutic targettwo-photonvasoconstriction
项目摘要
Neurovascular coupling (NVC) links increases in neuronal activity with a rapid and spatially restricted increase
in local blood flow. Knowledge on the cellular mechanisms driving NVC has been focused on transient
exteroceptive sensory stimulation and limited to superficial dorsal brain areas (cortex). Thus, less is understood
on NVC dynamics of deeper brain regions, which can be activated by slow, sustained, and widespread stimuli
(e.g., physiological disturbances of bodily homeostasis). Derangement in homeostatic processes is a key driver
of pathological mechanisms in prevalent diseases such as neurohumoral activation in heart failure (HF). To
address this critical gap in our knowledge, we developed a novel experimental approach that enables
interoceptive-induced NVC during a challenge to bodily homeostasis. Our preliminary data show that contrary to
the canonical NVC response, a systemic and physiological homeostatic challenge (acute salt-loading)
progressively increased vasopressin (VP) neuronal firing, evoked activity-dependent vasoconstriction and
decreased local blood flow in the hypothalamic supraoptic nucleus (SON). The salt-induced inverse NVC (iNVC)
response was slow, sustained and widespread, and mediated by the dendritic release of VP within the SON.
iNVC resulted in local tissue hypoxia, which evoked further excitation of VP neurons. Based on these
observations, we hypothesize that iNVC is a physiological process that contributes to positive feedback
modulation of the VP neuronal population so that the physiological disturbance can be efficiently corrected. Still,
the precise signaling mechanisms and cellular targets mediating this novel physiological modality of NVC, and
more importantly, whether an aberrant iNVC response contributes to exacerbated VP neuronal activity
characteristic of prevalent cardiometabolic diseases, such as HF, remains unknown. Using a multidisciplinary
approach, in Aim 1 we will elucidate the precise signaling mechanisms and cellular targets mediating activity-
dependent iNVC in the SON (neuron-to-vessel signaling). In Aim 2, we will determine the mechanisms and
targets by which the iNVC evokes the positive feedback modulation of VP neuronal firing activity (vasculo-to-
neuron signaling). Finally, in Aim3, we will elucidate mechanisms contributing to exacerbated iNVC-mediated
positive feedback regulation of VP neurons in a disease state (HF). Both in vivo and ex vivo novel approaches
(2-photon imaging, patch-clamp electrophysiology, and ex vivo cannulation of SON arterioles) will be used in
novel transgenic rat models that enable visualization (eGFP) and manipulation (opto- and chemogenetically) of
VP neurons in the SON. The activation of acid-sensing ion channels (ASIC) and modulation of astrocyte
glutamate transporters will be investigated as key molecular targets. We expect results from this work to
contribute to a better understanding of fundamental mechanisms underlying NVC responses in different brain
regions and under different activity-dependent modalities. Moreover, we anticipate our studies to unveil novel
pathological mechanisms and therapeutic targets for the treatment of highly prevalent cardiometabolic diseases.
1
神经血管偶联(NVC)链接增加了神经元的活动,并具有快速和空间受限的增加
在局部血液流动中。关于驱动NVC的细胞机制的知识主要集中在瞬变
外部感受性感觉刺激,仅限于大脑背侧浅层区域(皮质)。因此,人们对此了解较少。
慢、持续、大范围刺激可激活的脑深部NVC动力学研究
(例如,身体动态平衡的生理紊乱)。动态平衡过程中的紊乱是一个关键驱动因素
研究流行疾病的病理机制,如心力衰竭(HF)中的神经体液激活。至
为了解决我们知识中的这一关键差距,我们开发了一种新的实验方法,使
在挑战身体动态平衡的过程中,内感诱导的NVC。我们的初步数据显示,与
典型的NVC反应,一种系统性和生理性的动态平衡挑战(急性盐负荷)
进行性增加的加压素(VP)神经元放电,诱发的活动依赖的血管收缩和
下丘脑视上核(SON)局部血流量减少。盐诱导的逆NVC(INVC)
反应缓慢、持续和广泛,并由SON内VP的树突释放所介导。
INVC引起局部组织缺氧,引起VP神经元的进一步兴奋。基于这些
根据观察,我们假设iNVC是一个有助于正面反馈的生理过程
调节VP神经元的数量,从而使生理障碍得到有效纠正。不过,
NVC这种新的生理模式的确切信号机制和细胞靶点,以及
更重要的是,iNVC反应异常是否导致VP神经元活动加剧
普遍的心脏代谢性疾病的特征,如心衰,仍不清楚。使用多学科
方法,在目标1中,我们将阐明介导活动的精确信号机制和细胞靶标-
SON中依赖的iNVC(神经元到血管的信号)。在目标2中,我们将确定机制和
INVC诱发VP神经元放电活动正反馈调制的靶点
神经元信号)。最后,在Aim3中,我们将阐明导致iNVC介导的加重的机制
疾病状态下VP神经元的正反馈调节。体内和体外的新方法
(双光子成像、膜片钳电生理学和儿子小动脉的体外插管)将用于
新型转基因大鼠模型能够可视化(EGFP)和操纵(光和化学遗传学)
SON内的VP神经元。酸敏感离子通道的激活与星形胶质细胞的调控
谷氨酸转运体将被作为关键的分子靶标进行研究。我们期待这项工作的成果
有助于更好地理解不同大脑中NVC反应的基本机制
在不同的区域和不同的依赖活动的模式下。此外,我们预计我们的研究将揭开小说的面纱
高发心脏代谢性疾病的病理机制和治疗靶点。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSICA A FILOSA其他文献
JESSICA A FILOSA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSICA A FILOSA', 18)}}的其他基金
The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
- 批准号:
10745027 - 财政年份:2023
- 资助金额:
$ 67.19万 - 项目类别:
The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
- 批准号:
10419670 - 财政年份:2021
- 资助金额:
$ 67.19万 - 项目类别:
Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
- 批准号:
10391639 - 财政年份:2021
- 资助金额:
$ 67.19万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9884817 - 财政年份:2017
- 资助金额:
$ 67.19万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
10117289 - 财政年份:2017
- 资助金额:
$ 67.19万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9442869 - 财政年份:2017
- 资助金额:
$ 67.19万 - 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
- 批准号:
9311373 - 财政年份:2017
- 资助金额:
$ 67.19万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
7841408 - 财政年份:2009
- 资助金额:
$ 67.19万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
7806456 - 财政年份:2007
- 资助金额:
$ 67.19万 - 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
- 批准号:
8059688 - 财政年份:2007
- 资助金额:
$ 67.19万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 67.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 67.19万 - 项目类别:
Standard Grant














{{item.name}}会员




