Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease

下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用

基本信息

  • 批准号:
    10391639
  • 负责人:
  • 金额:
    $ 68.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

Neurovascular coupling (NVC) links increases in neuronal activity with a rapid and spatially restricted increase in local blood flow. Knowledge on the cellular mechanisms driving NVC has been focused on transient exteroceptive sensory stimulation and limited to superficial dorsal brain areas (cortex). Thus, less is understood on NVC dynamics of deeper brain regions, which can be activated by slow, sustained, and widespread stimuli (e.g., physiological disturbances of bodily homeostasis). Derangement in homeostatic processes is a key driver of pathological mechanisms in prevalent diseases such as neurohumoral activation in heart failure (HF). To address this critical gap in our knowledge, we developed a novel experimental approach that enables interoceptive-induced NVC during a challenge to bodily homeostasis. Our preliminary data show that contrary to the canonical NVC response, a systemic and physiological homeostatic challenge (acute salt-loading) progressively increased vasopressin (VP) neuronal firing, evoked activity-dependent vasoconstriction and decreased local blood flow in the hypothalamic supraoptic nucleus (SON). The salt-induced inverse NVC (iNVC) response was slow, sustained and widespread, and mediated by the dendritic release of VP within the SON. iNVC resulted in local tissue hypoxia, which evoked further excitation of VP neurons. Based on these observations, we hypothesize that iNVC is a physiological process that contributes to positive feedback modulation of the VP neuronal population so that the physiological disturbance can be efficiently corrected. Still, the precise signaling mechanisms and cellular targets mediating this novel physiological modality of NVC, and more importantly, whether an aberrant iNVC response contributes to exacerbated VP neuronal activity characteristic of prevalent cardiometabolic diseases, such as HF, remains unknown. Using a multidisciplinary approach, in Aim 1 we will elucidate the precise signaling mechanisms and cellular targets mediating activity- dependent iNVC in the SON (neuron-to-vessel signaling). In Aim 2, we will determine the mechanisms and targets by which the iNVC evokes the positive feedback modulation of VP neuronal firing activity (vasculo-to- neuron signaling). Finally, in Aim3, we will elucidate mechanisms contributing to exacerbated iNVC-mediated positive feedback regulation of VP neurons in a disease state (HF). Both in vivo and ex vivo novel approaches (2-photon imaging, patch-clamp electrophysiology, and ex vivo cannulation of SON arterioles) will be used in novel transgenic rat models that enable visualization (eGFP) and manipulation (opto- and chemogenetically) of VP neurons in the SON. The activation of acid-sensing ion channels (ASIC) and modulation of astrocyte glutamate transporters will be investigated as key molecular targets. We expect results from this work to contribute to a better understanding of fundamental mechanisms underlying NVC responses in different brain regions and under different activity-dependent modalities. Moreover, we anticipate our studies to unveil novel pathological mechanisms and therapeutic targets for the treatment of highly prevalent cardiometabolic diseases. 1
神经血管偶联(NVC)连接神经元活动的快速和空间限制性增加 局部血流中。关于驱动NVC的细胞机制的知识一直集中在瞬时 外感受性感觉刺激,并且仅限于浅表背侧脑区(皮层)。因此, NVC动力学的更深的大脑区域,可以激活缓慢,持续和广泛的刺激 (e.g.,身体内稳态的生理紊乱)。稳态过程的紊乱是 流行病的病理机制,如心力衰竭(HF)的神经体液激活。到 为了解决我们知识中的这一关键差距,我们开发了一种新的实验方法, 内感受性诱导的NVC在身体稳态的挑战。我们的初步数据显示, 典型的NVC反应,一种全身和生理稳态挑战(急性盐负荷) 进行性增加血管加压素(VP)神经元放电,诱发活动依赖性血管收缩, 下丘脑视上核(SON)局部血流量减少。盐诱导逆NVC(iNVC) 反应是缓慢的,持续的和广泛的,并介导的树突状细胞内的VP释放的SON。 iNVC导致局部组织缺氧,引起VP神经元的进一步兴奋。基于这些 通过观察,我们假设iNVC是一个有助于正反馈的生理过程, 调节VP神经元群,使得可以有效地校正生理干扰。不过, 精确的信号传导机制和细胞靶点介导NVC的这种新的生理形态,以及 更重要的是,异常的iNVC反应是否有助于VP神经元活动的加剧 流行的心脏代谢疾病,如HF的特征仍然未知。采用多学科 方法,在目标1中,我们将阐明精确的信号传导机制和介导活性的细胞靶点- SON中的依赖性iNVC(神经元-血管信号传导)。在目标2中,我们将确定机制, iNVC引起VP神经元放电活动的正反馈调节的靶点(血管- 神经元信号传导)。最后,在Aim 3中,我们将阐明导致iNVC介导的 疾病状态(HF)中VP神经元的正反馈调节。体内和离体新方法 (双光子成像、膜片钳电生理学和SON小动脉的离体插管)将用于 新的转基因大鼠模型,使可视化(eGFP)和操作(光学和化学遗传学), SON中的VP神经元。酸敏感离子通道(ASIC)的激活与星形胶质细胞的调节 谷氨酸转运蛋白将作为关键的分子靶点进行研究。我们希望这项工作的结果, 有助于更好地了解不同脑中NVC反应的基本机制 区域和不同的活动依赖模式。此外,我们期望我们的研究能够揭示新的 用于治疗高度流行的心脏代谢疾病的病理机制和治疗靶点。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JESSICA A FILOSA其他文献

JESSICA A FILOSA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JESSICA A FILOSA', 18)}}的其他基金

The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
  • 批准号:
    10745027
  • 财政年份:
    2023
  • 资助金额:
    $ 68.22万
  • 项目类别:
The impact of blood pressure variability on neurovascular function
血压变异性对神经血管功能的影响
  • 批准号:
    10419670
  • 财政年份:
    2021
  • 资助金额:
    $ 68.22万
  • 项目类别:
Inverse neurovascular coupling in the hypothalamus and its role in positive feedback regulation of Vasopressin neurons in health and disease
下丘脑的逆神经血管耦合及其在健康和疾病中加压素神经元正反馈调节中的作用
  • 批准号:
    10531928
  • 财政年份:
    2021
  • 资助金额:
    $ 68.22万
  • 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
  • 批准号:
    9884817
  • 财政年份:
    2017
  • 资助金额:
    $ 68.22万
  • 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
  • 批准号:
    10117289
  • 财政年份:
    2017
  • 资助金额:
    $ 68.22万
  • 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
  • 批准号:
    9442869
  • 财政年份:
    2017
  • 资助金额:
    $ 68.22万
  • 项目类别:
Clinically unscreened vasculo-glial-neuronal coupling is critical for physiological brain function
临床上未经筛选的血管-胶质-神经元耦合对于生理脑功能至关重要
  • 批准号:
    9311373
  • 财政年份:
    2017
  • 资助金额:
    $ 68.22万
  • 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
  • 批准号:
    7841408
  • 财政年份:
    2009
  • 资助金额:
    $ 68.22万
  • 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
  • 批准号:
    7806456
  • 财政年份:
    2007
  • 资助金额:
    $ 68.22万
  • 项目类别:
Signals and targets underlying mechanisms for neurovascular coupling in the brain
大脑神经血管耦合的信号和目标潜在机制
  • 批准号:
    8059688
  • 财政年份:
    2007
  • 资助金额:
    $ 68.22万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 68.22万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了