Understanding the Regulation and Biological Roles of Peptidoglycan Hydrolases in Staphylococcus aureus
了解金黄色葡萄球菌肽聚糖水解酶的调节和生物学作用
基本信息
- 批准号:10532762
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAmino AcidsAntibiotic ResistanceAntibioticsBacteriaBindingBinding SitesBiochemicalBiogenesisBioinformaticsBiologicalBiological AssayBiologyCatalytic DomainCell WallCell physiologyCellsCessation of lifeChemicalsComplexCrystallizationDataDefectDependenceEnzymesFluorescenceFutureGenesGeneticGenomic approachGlucosaminidaseGoalsGrowthHomologous GeneHydrolaseIn VitroInfectionInterferometryLengthLifeLipid ALipid BindingLipidsMapsMeasuresMedicineMembraneMolecularMolecular ConformationN-Acetylmuramoyl-L-alanine AmidaseNatureOxacillinPathway interactionsPenicillin ResistancePenicillinsPeptide HydrolasesPeptidesPeptidoglycanPhylogenetic AnalysisPhysiologyPolymersPolysaccharidesPositioning AttributeProceduresProcessProtein FamilyProtein RegionProteinsRegulationResearchResolutionRoleSeriesSiteStaphylococcus aureusStaphylococcus aureus infectionStructureTailTestingTherapeuticVirulenceWorkWorld War IIamidasebacterial resistancebeta-Lactam Resistancebeta-Lactamscandidate validationcrosslinkdesignexperimental studyfitnessfunctional genomicshigh throughput screeninginhibitorinnovationmutantnovelnovel therapeuticspathogenrelease factorresistant strainrhomboidscreeningstemtooltransposon sequencingunpublished works
项目摘要
PROJECT SUMMARY/ABSTRACT
The leading cause of antibiotic resistance-associated death in the US is the Gram-positive pathogen
Staphylococcus aureus. Many antibiotics used to treat S. aureus, including the beta-lactams, target biogenesis
of the essential peptidoglycan (PG) cell wall, predominantly by inhibiting the PG synthases. As beta-lactam
resistance spreads, it is important to identify new antibiotic targets. Other enzymes involved in building PG,
including the PG hydrolases, serve as promising candidates due to their importance for fitness, virulence, and
antibiotic resistance. Given the potentially destructive nature of hydrolytic enzymes, they must be carefully
regulated; disrupting their regulation is another antibiotic strategy. Mechanisms of hydrolase regulation are just
beginning to be understood. Our lab has recently identified two direct protein regulators of hydrolases in S.
aureus. Mutant strains of either of these complexes have growth and virulence defects, and they are
particularly sensitive to the beta-lactam oxacillin. They are thus potential targets for beta-lactam re-sensitizing
agents. The first regulator identified is ActH, which activates the amidase LytH. LytH-ActH cleaves stem
peptides to control availability of PG substrates, regulating where new PG is made around the cell. The
second, SpdC, controls the product distribution of the glucosaminidase SagB. In unpublished work, we
propose that SagB-SpdC acts as a PG release factor, cleaving nascent PG strands to separate them from the
membrane and allow their incorporation into the cell wall matrix. These regulators are each the first of their
kind, and preliminary bioinformatic analyses suggest similar complexes exist in other bacteria. Furthermore,
ActH and SpdC resemble the rhomboid and CAAX proteases respectively, but their hydrolase-regulating
functions do not require protease activity. These regulator roles are novel functions for these ubiquitous
families of proteins. The overarching goal of the proposed research is to uncover the mechanisms by which
these regulators act and to identify additional enzymes that function as peptidoglycan release factors. These
advances will reveal new therapeutic avenues to kill resistant bacteria. Aim 1 will uncover the mechanism of
how ActH activates LytH. The minimum domains required for LytH-ActH complexation and activity will be
determined using truncation mutants. To facilitate these studies and build on existing chemical tools from our
lab, a continuous, high-throughput assay for amidase activity will be developed; this assay will also enable
future screening for amidase inhibitors. Aim 2 will characterize the dependence of SagB-SpdC activity on the
lipid of a PG substrate and identify the lipid binding site on SpdC, using a biolayer interferometry-based
substrate binding assay and crosslinking experiments between the substrate and SpdC. Finally, aim 3 will
employ a functional genomics approach to identify other enzymes that can release PG strands in the absence
of SagB-SpdC. This work will uncover how SagB-SpdC is functionally connected to other cellular processes,
revealing new vulnerabilities in S. aureus that can be therapeutically exploited.
项目总结/摘要
在美国,抗生素耐药相关死亡的主要原因是革兰氏阳性病原体
金黄色葡萄球菌。许多抗生素用于治疗S。金黄色葡萄球菌,包括β-内酰胺,靶向生物合成
的必需肽聚糖(PG)的细胞壁,主要是通过抑制PG酶。作为β-内酰胺
随着耐药性的扩散,重要的是要确定新的抗生素靶标。其他参与构建PG的酶,
包括PG水解酶,由于它们对适应性、毒力和
抗生素耐药性由于水解酶具有潜在的破坏性,因此必须小心使用。
监管;扰乱他们的监管是另一种抗生素策略。水解酶的调节机制
开始被理解。本实验室最近鉴定了两种直接调节S.
金黄色。这些复合物中的任一种的突变株具有生长和毒力缺陷,并且它们是
对β-内酰胺苯唑西林特别敏感。因此,它们是β-内酰胺再致敏的潜在靶点
剂.确定的第一个调节剂是ActH,其激活酰胺酶LytH。LytH-ActH切割茎
肽来控制PG底物的可用性,调节细胞周围新PG的产生位置。的
第二,SpdC,控制氨基葡糖苷酶SagB的产物分布。在未出版的作品中,我们
SagB-SpdC作为PG释放因子,切割新生的PG链,将其从细胞中分离出来。
膜,并允许它们掺入细胞壁基质。这些监管机构都是他们的第一个
种类,初步的生物信息学分析表明,类似的复合物存在于其他细菌中。此外,委员会认为,
ActH和SpdC分别类似于菱形蛋白酶和CAAX蛋白酶,但它们的水解酶调节活性与蛋白酶的活性相似。
这些功能不需要蛋白酶活性。这些调节器的作用是这些无处不在的新功能
蛋白质家族拟议研究的总体目标是揭示
这些调节剂起作用并鉴定起肽聚糖释放因子作用的其它酶。这些
这些进展将揭示新的治疗方法来杀死耐药细菌。目标1将揭示
ActH如何激活LytH LytH-ActH复合和活性所需的最小结构域为
使用截短突变体测定。为了促进这些研究,并利用我们现有的化学工具,
实验室,一个连续的,高通量的测定酰胺酶活性将被开发;这种测定方法也将使
未来筛选酰胺酶抑制剂。目的2将表征SagB-SpdC活性对
PG底物的脂质,并确定SpdC上的脂质结合位点,使用基于生物层干涉法的
底物结合测定和底物与SpdC之间的交联实验。最后,aim 3将
采用功能基因组学方法来鉴定其他可以在缺乏PG链的情况下释放PG链的酶,
SagB-SpdC这项工作将揭示SagB-SpdC是如何在功能上与其他细胞过程联系在一起的,
揭示了S.金黄色葡萄球菌,可用于治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Elaine Page其他文献
Julia Elaine Page的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Elaine Page', 18)}}的其他基金
Understanding the Regulation and Biological Roles of Peptidoglycan Hydrolases in Staphylococcus aureus
了解金黄色葡萄球菌肽聚糖水解酶的调节和生物学作用
- 批准号:
10375364 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: