Understanding the Regulation and Biological Roles of Peptidoglycan Hydrolases in Staphylococcus aureus

了解金黄色葡萄球菌肽聚糖水解酶的调节和生物学作用

基本信息

  • 批准号:
    10375364
  • 负责人:
  • 金额:
    $ 5.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT The leading cause of antibiotic resistance-associated death in the US is the Gram-positive pathogen Staphylococcus aureus. Many antibiotics used to treat S. aureus, including the beta-lactams, target biogenesis of the essential peptidoglycan (PG) cell wall, predominantly by inhibiting the PG synthases. As beta-lactam resistance spreads, it is important to identify new antibiotic targets. Other enzymes involved in building PG, including the PG hydrolases, serve as promising candidates due to their importance for fitness, virulence, and antibiotic resistance. Given the potentially destructive nature of hydrolytic enzymes, they must be carefully regulated; disrupting their regulation is another antibiotic strategy. Mechanisms of hydrolase regulation are just beginning to be understood. Our lab has recently identified two direct protein regulators of hydrolases in S. aureus. Mutant strains of either of these complexes have growth and virulence defects, and they are particularly sensitive to the beta-lactam oxacillin. They are thus potential targets for beta-lactam re-sensitizing agents. The first regulator identified is ActH, which activates the amidase LytH. LytH-ActH cleaves stem peptides to control availability of PG substrates, regulating where new PG is made around the cell. The second, SpdC, controls the product distribution of the glucosaminidase SagB. In unpublished work, we propose that SagB-SpdC acts as a PG release factor, cleaving nascent PG strands to separate them from the membrane and allow their incorporation into the cell wall matrix. These regulators are each the first of their kind, and preliminary bioinformatic analyses suggest similar complexes exist in other bacteria. Furthermore, ActH and SpdC resemble the rhomboid and CAAX proteases respectively, but their hydrolase-regulating functions do not require protease activity. These regulator roles are novel functions for these ubiquitous families of proteins. The overarching goal of the proposed research is to uncover the mechanisms by which these regulators act and to identify additional enzymes that function as peptidoglycan release factors. These advances will reveal new therapeutic avenues to kill resistant bacteria. Aim 1 will uncover the mechanism of how ActH activates LytH. The minimum domains required for LytH-ActH complexation and activity will be determined using truncation mutants. To facilitate these studies and build on existing chemical tools from our lab, a continuous, high-throughput assay for amidase activity will be developed; this assay will also enable future screening for amidase inhibitors. Aim 2 will characterize the dependence of SagB-SpdC activity on the lipid of a PG substrate and identify the lipid binding site on SpdC, using a biolayer interferometry-based substrate binding assay and crosslinking experiments between the substrate and SpdC. Finally, aim 3 will employ a functional genomics approach to identify other enzymes that can release PG strands in the absence of SagB-SpdC. This work will uncover how SagB-SpdC is functionally connected to other cellular processes, revealing new vulnerabilities in S. aureus that can be therapeutically exploited.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julia Elaine Page其他文献

Julia Elaine Page的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Julia Elaine Page', 18)}}的其他基金

Understanding the Regulation and Biological Roles of Peptidoglycan Hydrolases in Staphylococcus aureus
了解金黄色葡萄球菌肽聚糖水解酶的调节和生物学作用
  • 批准号:
    10532762
  • 财政年份:
    2021
  • 资助金额:
    $ 5.18万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 5.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了