Core C: Genomics and Bioinformatics
核心 C:基因组学和生物信息学
基本信息
- 批准号:10661815
- 负责人:
- 金额:$ 29.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqBioinformaticsBiologicalBiological ModelsBiometryBudgetsCellsChIP-seqClinicalClinical TrialsClone CellsCollaborationsComplementComputer AnalysisComputing MethodologiesCore GrantCoupledCytometryDataData AnalysesData SetDedicationsDimensionsDisparateEpigenetic ProcessFoundationsGenetic TranscriptionGenomicsGoalsHumanHuman ResourcesImageImmuneImmune System DiseasesImmune responseImmunogenomicsImmunotherapyInfrastructureInterventionMalignant NeoplasmsMalignant neoplasm of pancreasMeasurementMeasuresMethodologyMethodsModalityMolecularMutationMyeloid CellsOutcomePancreatic Ductal AdenocarcinomaPathway interactionsPatternPeripheralProgram Research Project GrantsProteomicsRegimenResearch PersonnelResistanceResourcesShapesT cell receptor repertoire sequencingT-Cell ReceptorT-LymphocyteTechniquesTechnologyTestingTherapeuticTissuesTranscriptional RegulationTreatment ProtocolsTumor TissueUniversitiesVaccinesanalysis pipelinebioinformatics pipelinedata integrationdigital pathologydiverse dataepigenetic regulationepigenomicsexome sequencinghigh dimensionalityhuman modelhuman tissueimmune cell infiltrateimmune checkpointmultidimensional datamultimodal datamultiplexed imagingneoantigensnext generation sequencingnovelnovel strategiesnovel therapeutic interventionperipheral bloodpersonalized immunotherapypre-clinicalprogramsprotein profilingresponsesingle cell sequencingsingle-cell RNA sequencingsynergismtranscriptome sequencingtransfer learningtumortumor microenvironment
项目摘要
PROJECT SUMMARY
The Genomics and Bioinformatics Core (Core C) will provide state-of-the-art sequencing technologies to enable
immunogenomic and epigenomic measurements and corresponding bioinformatics analyses for the proposed
P01 Program Projects. This Core will deploy a wide range of bulk and single cell next generation sequencing
technologies optimized for the preclinical and clinical biospecimens in the Projects. Technologies supported by
this Core include: whole exome sequencing for neoantigen prediction, bulk and single cell RNA-sequencing for
inference of molecular and cellular networks, bulk and single cell T cell receptor sequencing to query T cell
clones and their associated function, and ATAC-seq and ChIP-seq technologies to query epigenetic and tran-
scriptional regulation. These technologies are complemented by optimized bioinformatics pipelines and compu-
tational methods tailored to immunogenomics developed by the Core and Program Investigators. Bioinformatics
methods are tailored to customized analyses of the datasets generated in Program Projects, and proteomics
measurements from the Digital Pathology and Mass Cytometry Core (Core D) to support TME characterization.
This Genomics and Bioinformatics Core will perform further integrative analyses of biospecimens of the thera-
peutic regimens employed across Projects in this Program and promote Program Synergy. The computational
methods employed in this Core will summarize the high-dimensional data to provide low dimensional summaries
to the Biostatistics and Clinical Trials Core (Core B) to identify molecular and cellular determinants of immuno-
therapy response and resistance to support the Projects in defining new therapeutic strategies for precision
immunotherapy.
The Core Co-Leaders combine expertise in genomics technologies (Dr. Yegnasubramanian) and bioinformatics
(Dr. Fertig). In addition to the Program-specific goals, this Core further leverages the existing infrastructure in
the NCI-designated Johns Hopkins University SCCC Core Grant-supported Experimental and Computational
Genomics Core (ECGC; Co-Director Yegnasubramanian; Co-Investigator Fertig). Both Leaders, Fertig and
Yegnasubramanian, have an established track record in Genomics and Bioinformatics in collaboration with one
another and Program Investigators ideally suited to enable the profiling and bioinformatics analysis proposed for
the Program in this Core.
项目摘要
基因组学和生物信息学核心(核心C)将提供最先进的测序技术,
免疫基因组学和表观基因组学测量以及相应的生物信息学分析,
P01计划项目。该核心将部署广泛的批量和单细胞下一代测序
为项目中的临床前和临床生物标本优化的技术。技术支持
该核心包括:用于新抗原预测的全外显子组测序,用于新抗原预测的批量和单细胞RNA测序,
分子和细胞网络推断、批量和单细胞T细胞受体测序以查询T细胞
克隆及其相关功能,以及ATAC-seq和ChIP-seq技术来查询表观遗传和转基因,
脚本规则。这些技术得到了优化的生物信息学管道和计算机的补充,
由核心和项目研究者开发的针对免疫基因组学的定量方法。生物信息
方法是定制的,以定制分析的数据集产生的计划项目,和蛋白质组学
数字病理学和质谱细胞计数核心(核心D)的测量结果,以支持TME表征。
该基因组学和生物信息学核心将对该物种的生物标本进行进一步的综合分析,
在本计划中的项目中采用不同的方案,并促进计划的协同作用。计算
本核心中采用的方法将对高维数据进行汇总,以提供低维汇总
生物统计学和临床试验核心(核心B),以确定免疫的分子和细胞决定因素,
治疗反应和耐药性,以支持项目定义新的治疗策略,
免疫疗法。
核心联合领导人联合收割机结合基因组学技术(Yegnasubramanian博士)和生物信息学的专业知识
(Dr. Fertig)。除了特定于计划的目标外,该核心还进一步利用现有的基础设施,
NCI指定的约翰霍普金斯大学SCCC核心资助实验和计算
基因组学核心(ECGC;共同主任Yegnasubramanian;共同研究员Fertig)。两位领导人,Fertig和
Yegnasubramanian在基因组学和生物信息学方面有着良好的记录,
另一个和程序调查员非常适合使分析和生物信息学分析提出了
在这个核心的计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasan Yegnasubramanian其他文献
Srinivasan Yegnasubramanian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasan Yegnasubramanian', 18)}}的其他基金
Microenvironmental drivers of indolent to aggressive prostate cancer switch mediated by combined MYC Activation and PTEN loss
MYC 激活和 PTEN 缺失联合介导的惰性前列腺癌向侵袭性前列腺癌转变的微环境驱动因素
- 批准号:
10518917 - 财政年份:2022
- 资助金额:
$ 29.48万 - 项目类别:
Microenvironmental drivers of indolent to aggressive prostate cancer switch mediated by combined MYC Activation and PTEN loss
MYC 激活和 PTEN 缺失联合介导的惰性前列腺癌向侵袭性前列腺癌转变的微环境驱动因素
- 批准号:
10698140 - 财政年份:2022
- 资助金额:
$ 29.48万 - 项目类别:
Identification and Validation of DNA Methylation Biomarkers for High Grade and/or
高等级和/或 DNA 甲基化生物标志物的鉴定和验证
- 批准号:
8719553 - 财政年份:2013
- 资助金额:
$ 29.48万 - 项目类别:
Identification and Validation of DNA Methylation Biomarkers for High Grade and/or
高等级和/或 DNA 甲基化生物标志物的鉴定和验证
- 批准号:
7468663 - 财政年份:2008
- 资助金额:
$ 29.48万 - 项目类别:
Identification and Validation of DNA Methylation Biomarkers for High Grade and/or
高等级和/或 DNA 甲基化生物标志物的鉴定和验证
- 批准号:
8116709 - 财政年份:
- 资助金额:
$ 29.48万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 29.48万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 29.48万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 29.48万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 29.48万 - 项目类别:
Discovery Grants Program - Individual