Methodological and data-driven approach to infer durable behavior change from mHealth data

从移动医疗数据推断持久行为变化的方法论和数据驱动方法

基本信息

  • 批准号:
    10662475
  • 负责人:
  • 金额:
    $ 48.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-17 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Abstract Poor cancers, lengthy, achieve diet and physical activity (PA) behaviors, the most prevalent risk factors for cardiometabolic diseases and can be treated to prevent disease. However, most diet, PA, and weight loss interventions are costly, and burdensome. Theseinterventions could be more cost-efficient if we could tell when people a sustainable pattern of health behavior change so that treatment could be tapered and then stopped without behavioral relapse. Theories of habit formation might be assumed to address this problem, but they have not proved actionable to guide treatment decisions because they do not specify measurable criteria to reliably detect acquisition of a durable behavior pattern. Hence, we propose to identify behavior patterns that precede and predict maintenance of target-level behavioral improvement that persist after an intervention ends. The measurements needed to tell whether an intervention has durably entrained behavioral improvement are collected as part of diet, PA, and weight loss interventions. Specifically, participants continuously self-monitor their behavior digitally while assessments are relayed back to inform them about progress toward goals. We will analyze self-monitoring measures collected in 6 mHealth trials, conducted over 14 years among over 1,600 participants and more than 147,000 daily observations, to assess when an intervention has durably entrained targeted behaviors, as validated by their reliable persistence post- intervention. We will use location scale modeling to quantify change not only in the absolute level (location) of a behavior but also in its within-person variability (scale). We posit that the induction of durable behavior change requires both improvement in location (increases for healthy behaviors; decreases for unhealthy ones) and decrease in scale (i.e., increased behavioral consistency). Aim 1 will apply existing location scale methods to test the hypothesis that effective interventions will improve the location and reduce the scale of targeted behaviors across all trials. Because existing methods only measure scale at the group level and cannot measure the change in an individual's behavioral consistency that we need to personalize treatment adaptation, Aim 2 will extend location scale methods to enable individual estimation of the rate of change in behavioral consistency. Estimates derived from the new method will be analyzed to learn which parameters of behavior change during intervention are most associated with maintenance post-treatment. Finally, Aim 3 will apply machine learning to estimates from the extended location-scale mixed models to establish ranges and behavioral patterns that predict behavioral maintenance post-treatment. These resultswill inform behaviorinterventionscience and improve treatment efficiency by guiding real-timedecisions about the needed dosage and duration of behavioral treatments.
摘要 贫困 癌症, 冗长, 实现 饮食和体力活动(PA)行为,心脏代谢疾病的最普遍的危险因素, 可以用来预防疾病。然而,大多数饮食,PA和减肥干预措施都是昂贵的, 和负担。如果我们能告诉人们 一个可持续的健康行为改变模式,这样治疗就可以逐渐减少,然后停止 没有行为复发。习惯形成的理论可能被认为可以解决这个问题,但它们 没有被证明可用于指导治疗决策,因为它们没有指定可测量的标准, 可靠地检测持久行为模式的获取。因此,我们建议识别行为模式, 预测并预测干预后持续存在的目标水平行为改善的维持 形接头.判断干预是否持久地诱导了行为 作为饮食、PA和减肥干预措施的一部分收集改善。具体而言,参与者 不断自我监测他们的行为数字化,而评估是中继回来,告诉他们 朝着目标前进。我们将分析在6个移动健康试验中收集的自我监测措施, 在1,600多名参与者和147,000多名日常观察中进行了14年的研究,以评估 干预持久地夹带了有针对性的行为,正如其可靠的持久性所证实的那样, 干预我们将使用位置规模模型来量化变化,不仅在绝对水平(位置), 一种行为,但也在其内部的人的可变性(规模)。我们认为持久行为的诱导 改变需要位置的改善(健康行为的增加;不健康行为的减少) 并且规模减小(即,行为的一致性)。目标1将采用现有的位置比例 方法来检验假设,有效的干预措施将改善的位置和减少的规模, 所有试验中的目标行为。由于现有的方法仅在组水平上测量规模, 我们无法测量个体行为一致性的变化, 适应,目标2将扩展位置尺度方法,使个人估计的变化率, 行为一致性将分析从新方法得出的估计值,以了解 干预期间的行为变化与维持治疗后最相关。最后,Aim 3将 将机器学习应用于来自扩展的位置-尺度混合模型的估计,以建立范围, 预测治疗后行为维持的行为模式。这些结果将为行为干预科学提供信息,并通过指导所需剂量的实时决策来提高治疗效率 和行为治疗的持续时间。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting influential subjects in intensive longitudinal data using mixed-effects location scale models.
Digitally characterizing the dynamics of multiple health behavior change.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Hedeker其他文献

Donald Hedeker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Hedeker', 18)}}的其他基金

Methodological and data-driven approach to infer durable behavior change from mHealth data
从移动医疗数据推断持久行为变化的方法论和数据驱动方法
  • 批准号:
    10435466
  • 财政年份:
    2020
  • 资助金额:
    $ 48.61万
  • 项目类别:
Methodological and data-driven approach to infer durable behavior change from mHealth data
从移动医疗数据推断持久行为变化的方法论和数据驱动方法
  • 批准号:
    10218158
  • 财政年份:
    2020
  • 资助金额:
    $ 48.61万
  • 项目类别:
Methodological and data-driven approach to infer durable behavior change from mHealth data
从移动医疗数据推断持久行为变化的方法论和数据驱动方法
  • 批准号:
    10029357
  • 财政年份:
    2020
  • 资助金额:
    $ 48.61万
  • 项目类别:
Integrative Training in the Neurobiology of Addictive Behaviors
成瘾行为神经生物学的综合训练
  • 批准号:
    10411193
  • 财政年份:
    2017
  • 资助金额:
    $ 48.61万
  • 项目类别:
Integrative Training in the Neurobiology of Addictive Behaviors
成瘾行为神经生物学的综合训练
  • 批准号:
    10626027
  • 财政年份:
    2017
  • 资助金额:
    $ 48.61万
  • 项目类别:
Variance Modeling of Smoking-related EMA Data
吸烟相关 EMA 数据的方差建模
  • 批准号:
    7706604
  • 财政年份:
    2009
  • 资助金额:
    $ 48.61万
  • 项目类别:
Data Management, Measurement and Statistical
数据管理、测量和统计
  • 批准号:
    7728835
  • 财政年份:
    2008
  • 资助金额:
    $ 48.61万
  • 项目类别:
Data Management/Statistics Core
数据管理/统计核心
  • 批准号:
    8300183
  • 财政年份:
    2004
  • 资助金额:
    $ 48.61万
  • 项目类别:
Data Management/Statistics Core
数据管理/统计核心
  • 批准号:
    8546698
  • 财政年份:
    2004
  • 资助金额:
    $ 48.61万
  • 项目类别:
Data Management/Statistics Core
数据管理/统计核心
  • 批准号:
    8378765
  • 财政年份:
    2004
  • 资助金额:
    $ 48.61万
  • 项目类别:

相似海外基金

Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
  • 批准号:
    DP240100640
  • 财政年份:
    2024
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
  • 批准号:
    23K01889
  • 财政年份:
    2023
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10452217
  • 财政年份:
    2022
  • 资助金额:
    $ 48.61万
  • 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10670838
  • 财政年份:
    2022
  • 资助金额:
    $ 48.61万
  • 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
  • 批准号:
    DP200100492
  • 财政年份:
    2020
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
  • 批准号:
    407264
  • 财政年份:
    2019
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
  • 批准号:
    18K18240
  • 财政年份:
    2018
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
  • 批准号:
    17K12379
  • 财政年份:
    2017
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
  • 批准号:
    17K13937
  • 财政年份:
    2017
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
  • 批准号:
    8742767
  • 财政年份:
    2014
  • 资助金额:
    $ 48.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了