BRAIN CONNECTS: Rapid and Cost‐effective Connectomics with Intelligent Image Acquisition, Reconstruction, and Querying
大脑连接:具有智能图像采集、重建和查询功能的快速且经济有效的连接组学
基本信息
- 批准号:10663654
- 负责人:
- 金额:$ 209.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAlgorithmsArchitectureArtificial IntelligenceBehaviorBrainCommunitiesComputer HardwareComputer softwareDataData CollectionData SetDatabasesDetectionDevicesElectron MicroscopeEndowmentEngineeringFailureGenerationsHumanImageIndividualInfrastructureIntelligenceMachine LearningMapsMethodsMusNeuronsNeurosciencesNoisePerformanceProcessResearchResearch InstituteResearch PersonnelResolutionResourcesRetinaRunningSamplingScanningServicesSignal TransductionSliceSpeedStructureSynapsesSystemTimeValidationbroadening participation researchcloud basedcomparativecomputer infrastructurecomputerized data processingconnectome datacostcost effectivedata analysis pipelinedata ecosystemdata ingestiondata visualizationdesignimage processingimaging Segmentationimaging systemimprovedintelligent algorithmnanoscaleneuralneural circuitnonhuman primateprogramsreconstructionscale uptool
项目摘要
SUMMARY
High-throughput connectomics is needed to generate the TB-, PB- and EB-scale wiring diagrams of mammalian
brains, but is limited to the few research institutes (e.g., Janelia, Allen, Max Planck) with sufficient infrastructure.
As resource-rich as these institutes are, none are able to do a whole brain at nanometer scale on their own. The
failure to broaden participation to a larger community is an obstacle to scaling connectomics. We propose a new
and more affordable imaging strategy that will allow many more teams to engage in connectomics.
High-speed electron microscopes for connectomics – e.g., multibeam SEMs – are rare and prohibitively ex-
pensive. More common single-beam SEMs have sufficiently high spatial resolution, but are prohibitively slow
for connectomics. We plan to increase the speed of single-beam SEM systems to the speed of multibeam
SEMs without substantially increasing cost. Our strategy adds artificial intelligence to SEM architecture to re-
duce the number and dwell time of pixels that need to be imaged at high-resolution without adversely affecting
“segmentability”. With new software and standard computer hardware, we can turn single-beam SEMs into intel-
ligent, powerful devices at negligible cost. We demonstrated a proof-of-concept of a smart scanning system that
we engineered into a single-beam SEM. The modified SEM acquires a low-resolution/low-dwell time image of a
brain slice at high speed. It then uses ultrafast ML algorithms to extract most of the wiring from these images,
while at the same time identifying in real time those salient pixels that should be rescanned to improve signal-to
noise in the final wiring diagram. We have achieved >10-fold speedup in image acquisition, and plan to increase
the rate significantly more.
A significant scale-up in the rate of connectomics demands comparable improvements in image processing
(stitching, alignment, and segmentation). We have built computationally more efficient methods for aligning and
segmenting connectome datasets. We will integrate these methods into a cloud-based platform that will allow
researchers without significant computational infrastructure or expertise to process connectomics datasets. All
data products and capabilities will be publicly accessible through BossDB.
In summary, this integrated research program will scale connectomics to a much larger neuroscience
community.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeff W Lichtman其他文献
The rise of the 'projectome'
“项目组”的兴起
- DOI:
10.1038/nmeth0407-307 - 发表时间:
2007-04-01 - 期刊:
- 影响因子:32.100
- 作者:
Narayanan Kasthuri;Jeff W Lichtman - 通讯作者:
Jeff W Lichtman
三次元電顕(電子顕微鏡)によるブレインマッピング技術革命
使用三维电子显微镜(电子显微镜)的脑图谱技术革命
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
芝田晋介;岡野栄之;Jeff W Lichtman - 通讯作者:
Jeff W Lichtman
Neurocartography
神经制图术
- DOI:
10.1038/npp.2009.138 - 发表时间:
2009-12-10 - 期刊:
- 影响因子:7.100
- 作者:
Narayanan Kasthuri;Jeff W Lichtman - 通讯作者:
Jeff W Lichtman
Optical sectioning microscopy
光学切片显微镜
- DOI:
10.1038/nmeth815 - 发表时间:
2005-11-18 - 期刊:
- 影响因子:32.100
- 作者:
José-Angel Conchello;Jeff W Lichtman - 通讯作者:
Jeff W Lichtman
Jeff W Lichtman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeff W Lichtman', 18)}}的其他基金
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 209.59万 - 项目类别:
A Tool for Synapse-level Circuit Analysis of Human Cerebral Cortex Specimens.
人类大脑皮层样本突触级电路分析的工具。
- 批准号:
10670926 - 财政年份:2021
- 资助金额:
$ 209.59万 - 项目类别:
A Tool for Synapse-level Circuit Analysis of Human Cerebral Cortex Specimens.
人类大脑皮层样本突触级电路分析的工具。
- 批准号:
10271724 - 财政年份:2021
- 资助金额:
$ 209.59万 - 项目类别:
A Facility to Generate Connectomics Information
生成连接组学信息的工具
- 批准号:
10377968 - 财政年份:2018
- 资助金额:
$ 209.59万 - 项目类别:
A Facility to Generate Connectomics Information
生成连接组学信息的工具
- 批准号:
10596124 - 财政年份:2018
- 资助金额:
$ 209.59万 - 项目类别:
Zooming into the fish's brain-What is really going on! Connectomics analysis of larval zebrafish.
放大鱼的大脑——到底发生了什么!
- 批准号:
10686997 - 财政年份:2017
- 资助金额:
$ 209.59万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 209.59万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 209.59万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 209.59万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 209.59万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 209.59万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 209.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 209.59万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 209.59万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 209.59万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 209.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists