Single-Cell Multi-omics to Link Clonal Mosaicism (CM) Genotypes with Chromatin, Epigenomic, Transcriptomic and Protein Phenotypes
单细胞多组学将克隆嵌合 (CM) 基因型与染色质、表观基因组、转录组和蛋白质表型联系起来
基本信息
- 批准号:10662879
- 负责人:
- 金额:$ 42.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAdmixtureAffectAntibodiesBar CodesBiological AssayBiologyCell NucleusCell physiologyCell surfaceCellsChromatinClonal ExpansionCollaborationsComplementary DNAComplexCoupledDNADNA Sequence AlterationDataDependenceEnsureEpigenetic ProcessFreezingGene ExpressionGenesGeneticGenetic HeterogeneityGenetic TranscriptionGenomic DNAGenomicsGenotypeGoalsGrowthHealthHematopoiesisHistonesHumanHuman bodyHybridsIn SituIndividualKnowledgeLeadLibrariesLinkMalignant NeoplasmsMapsMeasurementMessenger RNAMethodsMinorityModificationMorphologyMosaicismMutateMutationNatureNormal RangeNormal tissue morphologyOligonucleotidesOutcomePhasePhenotypePopulationProteinsRNARecurrenceResolutionReverse TranscriptionSamplingSignal TransductionSomatic MutationTechnologyTissuesTransposaseWorkcancer diagnosiscell behaviorcell typeclinical diagnosisdifferential expressiondriver mutationepigenomeepigenomic profilingepigenomicsexperiencefitnessgenomic locushistone modificationhuman tissuemRNA Expressionmethylomemultiple omicsmutantnanobodiesnovelprogramsprotein expressionsingle cell sequencingsingle cell technologysingle-cell RNA sequencingtechnology developmenttooltranscription factortranscriptometranscriptomics
项目摘要
SUMMARY
Clonal outgrowths are observed across a wide range of normal human tissues. Clones harbor somatic
mutations in known cancer and other driver genes, and show evidence of positive selection. Nevertheless, how
these driver mutations alter the cellular states of cells to allow clones to outcompete wildtype counterparts
remains poorly understood. To date, efforts to chart clonal outgrowths in normal tissues have been largely
limited to genotyping. This is due to the fact that clones often affect a minority of cells in a sample, without
distinguishing cell surface markers or morphological features.
To address this challenge, we developed an array of multi-omic single-cell technologies that are capable of
capturing multiple layers of information (e.g., genotypes, transcriptomes, methylomes, protein expression) from
the same single cells. Moreover, we addressed the specific challenge of genotyping in scRNA-seq in single
cells at high throughput by developing genotyping of transcriptomes. Importantly, this technology turns the
admixture of mutant and wildtype cell from a limitation to an advantage, enabling the direct comparison of
mutant (“winner”) and wildtype (“loser”) cells within the same individual.
Capitalizing on our experience with single-cell technology development, we aim to extend the multi-omics
single-cell GoT (Genotyping of Targeted loci) toolkit to allow to interrogate how somatic mutations lead to
clonal growth advantage. First, we will develop and enhance our targeted single-cell genotyping in the context
of chromatin accessibility (GoT-ChA). This technology critically performs genotyping from DNA directly,
obviating limiting dependencies on mutated loci gene expression. Thus, it can be applied to extracted nuclei,
critical for the SMaHT initiative. We will build on GoT-ChA using nanobody tethered transposases to jointly
profile somatic mutations and histone modifications in single nuclei (GoT-EpiM). To capture transcriptional
changes together with somatic mutation genotyping and chromatin accessibility, we will further use
transposition of mRNA:cDNA hybrid in GoT-ChA-RNA. Finally, we will leverage recent advances that use
antibodies tagged with oligonucleotides to capture mutated loci, chromatin and intra-nuclear proteins such as
transcription factors (GoT-ChA-Pro). In aim 2, we will collaborate with genomic characterization centers to
apply these technologies to primary human samples to define how clonal mutations in normal tissues alter
chromatin, histone modifications, transcriptomes and protein abundance profiles to yield clonal outgrowth.
Our overarching goal is to invoke multi-omic comparisons at the single-cell level between wildtype and mutant
cells to comprehensively identify the underpinnings of fitness advantage in clonal outgrowth. The proposed
comprehensive GoT toolkit will enable to link, at high throughout single-cell genotypes with transcriptional,
protein, and epigenetic, with important implication in the study of clonal mosaicism as a harbinger of cancer, as
well as other human health outcomes.
总结
在广泛的正常人体组织中观察到克隆生长。克隆港体细胞
已知癌症和其他驱动基因的突变,并显示出积极选择的证据。而如何
这些驱动突变改变了细胞的细胞状态,使克隆能够胜过野生型对应物
仍然知之甚少。迄今为止,在正常组织中绘制克隆生长的努力主要是
仅限于基因分型。这是因为克隆通常会影响样本中的少数细胞,
区分细胞表面标记或形态学特征。
为了应对这一挑战,我们开发了一系列多组学单细胞技术,
捕获多层信息(例如,基因型、转录组、甲基化组、蛋白质表达),
相同的单细胞。此外,我们解决了scRNA-seq中基因分型的特定挑战,
通过开发转录组的基因分型,以高通量的方式对细胞进行分析。重要的是,这项技术将
突变体和野生型细胞的混合物从限制变为优势,使得能够直接比较
在同一个体内的突变体(“赢家”)和野生型(“失败者”)细胞。
利用我们在单细胞技术开发方面的经验,我们的目标是扩展多组学
单细胞GoT(目标基因座的基因分型)工具包,允许询问体细胞突变如何导致
克隆生长优势首先,我们将开发和加强我们的目标单细胞基因分型的背景下,
染色质可及性(GoT-ChA)。这项技术直接从DNA中严格执行基因分型,
避免了对突变基因座基因表达的有限依赖性。因此,它可以应用于提取的核,
对SMaHT计划至关重要。我们将在GoT-ChA的基础上使用纳米抗体栓系转座酶,
在单个细胞核中分析体细胞突变和组蛋白修饰(GoT-EpiM)。为了捕获转录
变化连同体细胞突变基因分型和染色质可及性,我们将进一步使用
mRNA:cDNA杂合体在GoT-ChA-RNA中的转座。最后,我们将利用最新的进展,
用寡核苷酸标记的抗体,以捕获突变的基因座、染色质和核内蛋白,
转录因子(GoT-ChA-Pro)。在aim 2中,我们将与基因组表征中心合作,
将这些技术应用于原始人类样本,以确定正常组织中的克隆突变如何改变
染色质、组蛋白修饰、转录组和蛋白质丰度谱以产生克隆生长。
我们的首要目标是在单细胞水平上在野生型和突变型之间进行多组学比较
细胞,以全面确定克隆生长的健身优势的基础。拟议
全面的GoT工具包将能够在高通量单细胞基因型与转录之间建立联系,
蛋白质和表观遗传,在克隆嵌合体作为癌症预兆的研究中具有重要意义,
以及其他人类健康结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Landau其他文献
Dan Landau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Landau', 18)}}的其他基金
Genome-wide mutational integration for ultra-sensitive plasma tumor burden monitoring in immunotherapy
全基因组突变整合用于免疫治疗中超灵敏血浆肿瘤负荷监测
- 批准号:
10344658 - 财政年份:2022
- 资助金额:
$ 42.82万 - 项目类别:
Expanding the GoT toolkit to link single-cell clonal genotypes with protein, transcriptomic, epigenomic and spatial phenotypes
扩展 GoT 工具包,将单细胞克隆基因型与蛋白质、转录组、表观基因组和空间表型联系起来
- 批准号:
10698112 - 财政年份:2022
- 资助金额:
$ 42.82万 - 项目类别:
Genome-wide mutational integration for ultra-sensitive plasma tumor burden monitoring in immunotherapy
全基因组突变整合用于免疫治疗中超灵敏血浆肿瘤负荷监测
- 批准号:
10631872 - 财政年份:2022
- 资助金额:
$ 42.82万 - 项目类别:
Center for Integrated Cellular Analysis - Alanna Fields
综合细胞分析中心 - Alanna Fields
- 批准号:
10839068 - 财政年份:2020
- 资助金额:
$ 42.82万 - 项目类别:
Center for Integrated Cellular Analysis - Lina Habba
综合细胞分析中心 - Lina Habba
- 批准号:
10839082 - 财政年份:2020
- 资助金额:
$ 42.82万 - 项目类别:
Center for Integrated Cellular Analysis - Salma Amin
综合细胞分析中心 - Salma Amin
- 批准号:
10839076 - 财政年份:2020
- 资助金额:
$ 42.82万 - 项目类别:
Center for Integrated Cellular Analysis - Stephanie Figueroa Reyes
综合细胞分析中心 - Stephanie Figueroa Reyes
- 批准号:
10839077 - 财政年份:2020
- 资助金额:
$ 42.82万 - 项目类别:
Center for Integrated Cellular Analysis - Andrew Brown
综合细胞分析中心 - 安德鲁·布朗
- 批准号:
10839072 - 财政年份:2020
- 资助金额:
$ 42.82万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.82万 - 项目类别:
Research Grant