Expanding the GoT toolkit to link single-cell clonal genotypes with protein, transcriptomic, epigenomic and spatial phenotypes
扩展 GoT 工具包,将单细胞克隆基因型与蛋白质、转录组、表观基因组和空间表型联系起来
基本信息
- 批准号:10698112
- 负责人:
- 金额:$ 41.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdmixtureAdoptionAffectAwarenessBiological AssayBone MarrowCell physiologyCell surfaceCellsCellular Indexing of Transcriptomes and Epitopes by SequencingChromatinChronic Lymphocytic LeukemiaClonal EvolutionClonal ExpansionDevelopmentDisease ResistanceEpigenetic ProcessEvolutionFrequenciesGenesGeneticGenetic HeterogeneityGenetic TranscriptionGenomicsGenotypeGoalsGrowthHematopoiesisHeterogeneityHumanHuman bodyImmune systemIndividualKnowledgeLeadLinkMalignant - descriptorMalignant NeoplasmsMinorityMolecularMosaicismMutateMutationMyeloproliferative diseaseNatureNormal RangeNormal tissue morphologyOutputPhenotypePopulationProteinsRNA SplicingResistanceResolutionRiskSamplingSignal TransductionSlideSomatic MutationSpatial DistributionTechnologyTimeTranscriptVariantanalytical methodcancer diagnosiscancer genomicscancer therapycell behaviorcell typeclinical diagnosisdriver mutationepigenomicsexperiencefitnesshematopoietic differentiationhuman tissuemethylomemultiple omicsmutantnovelphenotypic biomarkerprotein expressionsingle cell sequencingsingle cell technologysingle-cell RNA sequencingtargeted treatmenttherapy developmenttherapy resistanttranscription factortranscriptometranscriptomics
项目摘要
Abstract
Clonal outgrowths are observed across a wide range of normal human tissues. They also appear during the
course of cancer evolution, leading to clonal heterogeneity that fuels the development of treatment-resistant
disease. Clones harbor somatic mutations in known cancer driver genes and show evidence of positive
selection. Nevertheless, how these driver mutations alter the cellular states of cells to allow clones to
outcompete wildtype counterparts remains poorly understood. To date, efforts to chart clonal outgrowths in
normal or malignant human tissues have been largely limited to genotyping. This is due to the fact that these
clones often affect a minority of cells in a sample without distinguishing cell-surface markers.
To address this challenge, we developed an array of multi-omic single-cell technologies that are capable of
capturing multiple layers of information (e.g., genotypes, transcriptomes, methylomes, protein expression) from
the same single cells. Moreover, we addressed the specific challenge of genotyping in scRNA-seq in single
cells at high throughput by developing Genotyping of Targeted loci (GoT). Importantly, GoT turns the admixture
of mutant and wildtype hematopoiesis from a limitation to an advantage, enabling the direct comparison of
mutant (“winner”) and wildtype (“loser”) cells within the same individual.
Given the increasing adoption of our GoT platform, we now aim to extend the multi-omics single-cell toolkit to
study how somatic mutations lead to clonal growth advantage. We will integrate GoT with Cellular Indexing of
Transcriptomes and Epitopes by sequencing (CITE-seq) to yield GoT-CITE, which will add the critical layer of
cell surface marker phenotyping to single-cell whole transcriptomes. As mutations in splicing factors are
specifically associated with greater risk of malignant transformation, we will develop and implement GoT-
Splice, where long-read sequencing will be used to define splicing variation as a function of cell identity. Given
the high frequency of epigenetic mutations in cancer, we will also develop and apply targeted single-cell
genotyping in the context of chromatin accessibility (GoT-ChA). Finally, as clone growth will also be
determined by its interaction with the microenvironment, to define clonal driver genotypes in its spatial context,
we will adapt spatial transcriptomics (ST) to add the critical feature of genotyping (GoT-ST).
Our overarching goal is to invoke multi-omic comparisons at the single-cell level between wildtype and mutant
cells to comprehensively identify the underpinnings of fitness advantage in clonal outgrowth. The proposed
comprehensive GoT toolkit will enable the linking, at high throughout, single-cell genotypes with transcriptional,
protein, epigenetic and spatial phenotypes. We anticipate that these advances will transform the study of clonal
mosaicism as a harbinger of cancer, as well as resistance to cancer therapies.
摘要
在广泛的正常人体组织中观察到克隆生长。它们也出现在
癌症演变过程,导致克隆异质性,从而促进耐药细胞的发展。
疾病克隆在已知的癌症驱动基因中携带体细胞突变,并显示出阳性的证据。
选择.然而,这些驱动突变如何改变细胞的细胞状态,使克隆能够
胜过野生型对应物仍然知之甚少。到目前为止,绘制克隆生长的努力,
正常或恶性人体组织在很大程度上限于基因分型。这是因为,
克隆通常影响样品中的少数细胞,而没有区分细胞表面标记。
为了应对这一挑战,我们开发了一系列多组学单细胞技术,
捕获多层信息(例如,基因型、转录组、甲基化组、蛋白质表达),
相同的单细胞。此外,我们解决了scRNA-seq中基因分型的特定挑战,
通过开发靶向基因座的基因分型(GoT)以高通量培养细胞。重要的是,GoT将混合物
突变型和野生型造血从限制到优势,使直接比较
在同一个体内的突变体(“赢家”)和野生型(“失败者”)细胞。
鉴于我们的GoT平台越来越多地被采用,我们现在的目标是将多组学单细胞工具包扩展到
研究体细胞突变如何导致克隆生长优势。我们将整合GoT与蜂窝索引,
转录组和表位测序(CITE-seq),以产生GoT-CITE,这将增加关键层,
细胞表面标志物表型鉴定为单细胞全转录组。由于剪接因子中的突变
特别是与恶性转化的风险更大,我们将制定和实施GoT-
剪接,其中将使用长读序测序来定义剪接变异作为细胞身份的函数。给定
癌症中表观遗传突变的频率很高,我们还将开发和应用靶向单细胞
在染色质可及性(GoT-ChA)的背景下进行基因分型。最后,克隆生长也将
由其与微环境的相互作用决定,以在其空间背景中定义克隆驱动基因型,
我们将调整空间转录组学(ST)以增加基因分型(GoT-ST)的关键特征。
我们的首要目标是在单细胞水平上在野生型和突变型之间进行多组学比较
细胞,以全面确定克隆生长的健身优势的基础。拟议
全面的GoT工具包将能够在高通量下将单细胞基因型与转录,
蛋白质、表观遗传和空间表型。我们预计,这些进展将改变克隆的研究
嵌合体作为癌症的预兆,以及对癌症疗法的抗性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Landau其他文献
Dan Landau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Landau', 18)}}的其他基金
Single-Cell Multi-omics to Link Clonal Mosaicism (CM) Genotypes with Chromatin, Epigenomic, Transcriptomic and Protein Phenotypes
单细胞多组学将克隆嵌合 (CM) 基因型与染色质、表观基因组、转录组和蛋白质表型联系起来
- 批准号:
10662879 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Genome-wide mutational integration for ultra-sensitive plasma tumor burden monitoring in immunotherapy
全基因组突变整合用于免疫治疗中超灵敏血浆肿瘤负荷监测
- 批准号:
10344658 - 财政年份:2022
- 资助金额:
$ 41.08万 - 项目类别:
Genome-wide mutational integration for ultra-sensitive plasma tumor burden monitoring in immunotherapy
全基因组突变整合用于免疫治疗中超灵敏血浆肿瘤负荷监测
- 批准号:
10631872 - 财政年份:2022
- 资助金额:
$ 41.08万 - 项目类别:
Center for Integrated Cellular Analysis - Alanna Fields
综合细胞分析中心 - Alanna Fields
- 批准号:
10839068 - 财政年份:2020
- 资助金额:
$ 41.08万 - 项目类别:
Center for Integrated Cellular Analysis - Lina Habba
综合细胞分析中心 - Lina Habba
- 批准号:
10839082 - 财政年份:2020
- 资助金额:
$ 41.08万 - 项目类别:
Center for Integrated Cellular Analysis - Salma Amin
综合细胞分析中心 - Salma Amin
- 批准号:
10839076 - 财政年份:2020
- 资助金额:
$ 41.08万 - 项目类别:
Center for Integrated Cellular Analysis - Stephanie Figueroa Reyes
综合细胞分析中心 - Stephanie Figueroa Reyes
- 批准号:
10839077 - 财政年份:2020
- 资助金额:
$ 41.08万 - 项目类别:
Center for Integrated Cellular Analysis - Andrew Brown
综合细胞分析中心 - 安德鲁·布朗
- 批准号:
10839072 - 财政年份:2020
- 资助金额:
$ 41.08万 - 项目类别:
相似海外基金
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
- 批准号:
10571022 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
- 批准号:
10590405 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
- 批准号:
2305910 - 财政年份:2023
- 资助金额:
$ 41.08万 - 项目类别:
Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
- 批准号:
10608931 - 财政年份:2022
- 资助金额:
$ 41.08万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 41.08万 - 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
- 批准号:
2116322 - 财政年份:2021
- 资助金额:
$ 41.08万 - 项目类别:
Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10307040 - 财政年份:2021
- 资助金额:
$ 41.08万 - 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
- 批准号:
10307680 - 财政年份:2021
- 资助金额:
$ 41.08万 - 项目类别: