Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
基本信息
- 批准号:10540708
- 负责人:
- 金额:$ 62.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAchievementAcuteAddressAdverse eventAftercareAneurysmAnimal ModelArteriesBiologicalBlood VesselsBlood specimenBrain AneurysmsCircle of WillisClinicalClinical ResearchComplexComplicationComputer ModelsDataDepositionDevice DesignsDevice SafetyDevice or Instrument DevelopmentDevicesDistalEndotheliumEngineeringEvaluationEventFibrinFibrinogenFundingFutureGenerationsGrowthHemorrhageImageInterdisciplinary StudyInternal carotid artery structureIntracranial AneurysmIschemiaKnowledgeLegal patentLiquid substanceModelingMonitorMorphologyNeckOryctolagus cuniculusOutcomeParentsPatient CarePatientsPerforationPhysiologic pulsePlatelet ActivationProteinsReproducibilityResearch PersonnelResearch ProposalsRiskRisk FactorsRoleRuptured AneurysmSafetySideStatistical MethodsStrokeSuperior Mesenteric Artery BranchSuperior mesenteric artery structureSystemTechnologyTestingThrombinThrombosisTissue EngineeringTranslational ResearchWorkbiomarker discoverycell motilitycirculating microRNAclinical applicationclinical implementationclinical translationdensityfollow-uphealinghemodynamicsimplantationimprovedimproved outcomein silicoin vitro Modelin vivoindividual patientinnovationmicroRNA biomarkersmolecular imagingmultidisciplinarymultimodalitynext generationnovelpatient variabilityplatelet functionpoint of carepreventrepositoryresponsestent thrombosistherapeutic targetthrombotic complicationstooltranslational research program
项目摘要
PROJECT SUMMARY
This competitive renewal application focuses on advancing the field of intracranial flow diversion (FDs), that
currently constitutes approximately one-third of the treatment of unruptured intracranial aneurysms. There
remain key gaps in the knowledge that hinder expansion of the clinical application of these transformational
devices, which to date are limited in scope to unruptured, proximal aneurysms along the internal carotid artery.
We envision that, with our proposed discovery system, we will facilitate application of novel, next-generation
devices in ruptured aneurysms and in aneurysms distal to the Circle of Willis, and will allow customization of
approaches to minimize thromboembolic risk in individual patients. We will break down these barriers to
expanded utility by 1) understanding of key aspects of aneurysm occlusion, such as the role of acute and
appropriate fibrin deposition across the aneurysm neck, 2) unraveling the mechanisms underlying side branch
occlusion (i.e. the impact of hemodynamic, or neointimal growth and endothelizalization across the side branch
ostia, or both), and 3) identifying the potential risk factors that cause elevated risk of thromboembolic
complications, such as hemodynamical variable, device malapposition, platelet function, and untoward fibrin
deposition beyond the neck of the aneurysm, among others. We propose to employ innovative approaches in
in vivo intravascular fibrin molecular imaging, computational fluid dynamics modeling, and improved animal
modeling, and finally biomarker discovery in clinical studies. These approaches can improve the outcome of
not only FD, but other devices in treating aneurysms by better understanding of the mechanisms of both
aneurysm healing and complications. Our robust and reproducible methods of statistical evaluations will
directly assess 1) the role of fibrin deposition rapidity in the device at the neck of the aneurysm aids robust
aneurysm, 2) the suitability and validity of the superior mesenteric artery branches to simulate the patency of
the small perforating vessels covered by FDs, and 3) correlate biological and imaging data with delayed
ischemic events following FD therapy.The discoveries from this hypothesis-driven, multidisciplinary,
multimodality, clinical-translational research will provide a robust understanding of not only the mechanism of
action of FDs in aneurysm healing, but also the development of device-related complications. These
discoveries can provide guidance to clinicians using current technologies to optimize outcomes and minimize
complications, as well as investigators and engineers to develop improved devices. Ultimately, this information
will allow neurointerventionalists to make better informed decisions on device choice, leading to improved
patient care.
项目总结
这一竞争性更新应用专注于推进颅内血流分流(FDS)领域,即
目前约占未破裂颅内动脉瘤治疗的三分之一。那里
仍然是知识上的主要差距,阻碍了这些变革性药物临床应用的扩大
到目前为止,这种装置的范围仅限于沿颈内动脉的未破裂的近端动脉瘤。
我们设想,通过我们提出的发现系统,我们将促进新的下一代
在破裂的动脉瘤和Willis环远端的动脉瘤中使用设备,并将允许定制
降低个体患者血栓栓塞症风险的方法。我们将打破这些障碍,
通过1)了解动脉瘤闭塞的关键方面,如急性和慢性脑出血的作用,扩大了实用性。
合适的纤维蛋白沉积穿过动脉瘤颈部,2)解开侧支基础的机制
闭塞(即血流动力学的影响,或侧支血管内膜生长和内皮化的影响
Ostia,或两者兼而有之),以及3)确定导致血栓栓塞症风险升高的潜在危险因素
并发症,如血流动力学变量、装置错位、血小板功能和不良纤维蛋白
动脉瘤颈部以外的沉积,以及其他。我们建议在以下方面采用创新方法
体内血管内纤维蛋白分子成像、计算流体动力学建模和改进的动物
建模,最后在临床研究中发现生物标记物。这些方法可以改善
不仅是FD,而且是通过更好地了解两者的机制来治疗动脉瘤的其他装置
动脉瘤愈合和并发症。我们稳健和可重复的统计评估方法将
直接评估1)在动脉瘤颈部的装置中纤维蛋白沉积速度的作用有助于强健
2)肠系膜上动脉分支模拟血管再通的适宜性和有效性
被FDs覆盖的小穿孔血管,以及3)生物和影像数据与延迟
FD治疗后的缺血事件。这一假设驱动的、多学科的、
多模式、临床-翻译研究将提供对以下方面的深入理解:
FDs在动脉瘤愈合中的作用,也是装置相关并发症的发展。这些
这些发现可以为临床医生提供指导,使用当前的技术来优化结果并将
并发症,以及研究人员和工程师开发改进的设备。最终,这些信息
将允许神经干预者在设备选择方面做出更明智的决定,从而改善
病人护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan R Cebral其他文献
Juan R Cebral的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan R Cebral', 18)}}的其他基金
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
10363267 - 财政年份:2021
- 资助金额:
$ 62.51万 - 项目类别:
Improving Cerebral Aneurysm Risk Assessment through Understanding Wall Vulnerability and Failure Modes
通过了解壁的脆弱性和失效模式改进脑动脉瘤风险评估
- 批准号:
10398949 - 财政年份:2016
- 资助金额:
$ 62.51万 - 项目类别:
Improving Cerebral Aneurysm Risk Assessment through Understanding Wall Vulnerability and Failure Modes
通过了解壁的脆弱性和失效模式改进脑动脉瘤风险评估
- 批准号:
10621168 - 财政年份:2016
- 资助金额:
$ 62.51万 - 项目类别:
Improved Evaluation of PCOM Aneurysms: Angio-Architecture, Hemodynamics and Shape
改进 PCOM 动脉瘤的评估:血管结构、血流动力学和形状
- 批准号:
9144876 - 财政年份:2015
- 资助金额:
$ 62.51万 - 项目类别:
The link between hemodynamics and wall structure in cerebral aneurysms
脑动脉瘤血流动力学与壁结构之间的联系
- 批准号:
8609084 - 财政年份:2013
- 资助金额:
$ 62.51万 - 项目类别:
The link between hemodynamics and wall structure in cerebral aneurysms
脑动脉瘤血流动力学与壁结构之间的联系
- 批准号:
8512060 - 财政年份:2013
- 资助金额:
$ 62.51万 - 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
9284516 - 财政年份:2011
- 资助金额:
$ 62.51万 - 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
9175421 - 财政年份:2011
- 资助金额:
$ 62.51万 - 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
- 批准号:
9750816 - 财政年份:2011
- 资助金额:
$ 62.51万 - 项目类别:
Computational Analysis of Cerebral Aneurysm Evolution
脑动脉瘤演化的计算分析
- 批准号:
7617027 - 财政年份:2007
- 资助金额:
$ 62.51万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 62.51万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 62.51万 - 项目类别:
Standard Grant














{{item.name}}会员




