Computational Analysis of Cerebral Aneurysm Evolution

脑动脉瘤演化的计算分析

基本信息

  • 批准号:
    7617027
  • 负责人:
  • 金额:
    $ 34.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

Description (provided by the applicant): Cerebral aneurysm rupture is a leading cause of hemorrhagic strokes. Because unruptured cerebral aneurysms are being more frequently detected and the prognosis of subarachnoid hemorrhage is still poor, clinicians are often required to judge which aneurysms are prone to progression and rupture. Unfortunately our understanding of the natural history of cerebral aneurysms is limited because the processes of aneurysm initiation, growth and rupture are not well understood. Previous studies have identified the major factors involved in these processes: a) arterial hemodynamics, b) wall biomechanics and mechanobiology, and c) peri-aneurysmal environment (PAE). However, little is known about the relative importance of these factors, their interaction in an individual subject, or their variability across at-risk populations. The overall objective of this project is twofold: a) to gain a better understanding of the mechanisms responsible for the progression of cerebral aneurysms, and b) to develop an integrated system for cerebral aneurysm analysis. Our working hypothesis is that the growth pattern of cerebral aneurysms is determined by the distribution of focal wall damage related to exposure to concentrated hemodynamic wall shear stress and the mitigating effect of bone-aneurysm contact. The project will be divided into three basic phases. In Phase I (development), we will develop and integrate aneurysm modeling and characterization tools and database. The hemodynamics modeling suite will be validated with patient-specific in vitro models constructed using rapid prototyping technology and measured with particle image velocimetry and laser Doppler velocimetry. In Phase II (knowledge discovery), a series of growing and stable aneurysms will be selected from a unique longitudinal database of computed tomography angiography (CTA) images of unruptured aneurysms existing at UCLA, and modeled in order to identify hemodynamic and PAE characteristics and wall damage markers that best correlate with aneurysm growth. In Phase III (demonstration), we will conduct a prospective study of aneurysm evolution based on longitudinal CTA data of patients with unruptured cerebral aneurysms in order to evaluate the growth predictors identified in Phase II. The Specific Aims of the project are to: 1. Develop a system for cerebral aneurysm characterization 2. Study associations of hemodynamic and PAE characteristics to aneurysm growth 3. Evaluate growth predictors using prospective longitudinal data of unruptured aneurysms If our hypotheses are proven to be correct, and the methodology is successfully implemented, there will be a huge positive impact upon the clinical management of unruptured brain aneurysms.
描述(由申请方提供):脑动脉瘤破裂是出血性卒中的主要原因。由于未破裂的脑动脉瘤越来越多地被发现,而蛛网膜下腔出血的预后仍然很差,临床医生经常需要判断哪些动脉瘤容易进展和破裂。不幸的是,我们对脑动脉瘤的自然史的理解是有限的,因为动脉瘤的发生,生长和破裂的过程没有很好地理解。先前的研究已经确定了这些过程中涉及的主要因素:a)动脉血流动力学,B)壁生物力学和机械生物学,以及c)血管周围环境(PAE)。然而,我们对这些因素的相对重要性、它们在个体受试者中的相互作用或它们在高危人群中的变异性知之甚少。该项目的总体目标有两个方面:a)更好地了解脑动脉瘤进展的机制,以及B)开发一个用于脑动脉瘤分析的集成系统。我们的工作假设是,脑动脉瘤的生长模式是由与暴露于集中的血流动力学壁剪切应力相关的局灶性壁损伤的分布和骨-动脉瘤接触的缓解作用决定的。该项目将分为三个基本阶段。在第一阶段(开发),我们将开发和集成动脉瘤建模和表征工具和数据库。血液动力学建模套件将通过使用快速原型技术构建的患者特定体外模型进行验证,并使用粒子图像测速仪和激光多普勒测速仪进行测量。在II期(知识发现)中,将从UCLA现有未破裂动脉瘤的计算机断层扫描血管造影(CTA)图像的独特纵向数据库中选择一系列生长和稳定的动脉瘤,并进行建模,以识别与动脉瘤生长最相关的血流动力学和PAE特征以及壁损伤标记物。在III期(演示)中,我们将基于未破裂脑动脉瘤患者的纵向CTA数据进行一项动脉瘤演变的前瞻性研究,以评价II期中确定的生长预测因子。该项目的具体目标是:1。开发脑动脉瘤表征系统2.研究血流动力学和PAE特征与动脉瘤生长的相关性3.使用未破裂动脉瘤的前瞻性纵向数据评估生长预测因子如果我们的假设被证明是正确的,并且该方法被成功实施,将对未破裂脑动脉瘤的临床管理产生巨大的积极影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan R Cebral其他文献

Juan R Cebral的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan R Cebral', 18)}}的其他基金

Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
  • 批准号:
    10363267
  • 财政年份:
    2021
  • 资助金额:
    $ 34.04万
  • 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
  • 批准号:
    10540708
  • 财政年份:
    2021
  • 资助金额:
    $ 34.04万
  • 项目类别:
Improving Cerebral Aneurysm Risk Assessment through Understanding Wall Vulnerability and Failure Modes
通过了解壁的脆弱性和失效模式改进脑动脉瘤风险评估
  • 批准号:
    10398949
  • 财政年份:
    2016
  • 资助金额:
    $ 34.04万
  • 项目类别:
Improving Cerebral Aneurysm Risk Assessment through Understanding Wall Vulnerability and Failure Modes
通过了解壁的脆弱性和失效模式改进脑动脉瘤风险评估
  • 批准号:
    10621168
  • 财政年份:
    2016
  • 资助金额:
    $ 34.04万
  • 项目类别:
Improved Evaluation of PCOM Aneurysms: Angio-Architecture, Hemodynamics and Shape
改进 PCOM 动脉瘤的评估:血管结构、血流动力学和形状
  • 批准号:
    9144876
  • 财政年份:
    2015
  • 资助金额:
    $ 34.04万
  • 项目类别:
The link between hemodynamics and wall structure in cerebral aneurysms
脑动脉瘤血流动力学与壁结构之间的联系
  • 批准号:
    8609084
  • 财政年份:
    2013
  • 资助金额:
    $ 34.04万
  • 项目类别:
The link between hemodynamics and wall structure in cerebral aneurysms
脑动脉瘤血流动力学与壁结构之间的联系
  • 批准号:
    8512060
  • 财政年份:
    2013
  • 资助金额:
    $ 34.04万
  • 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
  • 批准号:
    9284516
  • 财政年份:
    2011
  • 资助金额:
    $ 34.04万
  • 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
  • 批准号:
    9175421
  • 财政年份:
    2011
  • 资助金额:
    $ 34.04万
  • 项目类别:
Computational and Biological Approach to Flow Diversion
分流的计算和生物学方法
  • 批准号:
    9750816
  • 财政年份:
    2011
  • 资助金额:
    $ 34.04万
  • 项目类别:

相似海外基金

SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
    Cooperative Agreement
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
    Operating Grants
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 34.04万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 34.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了