Predicting Autism and Social Functioning from Computer Vision Analyses of Motor Synchrony During Dyadic Interactions
通过计算机视觉对二元交互过程中运动同步的分析来预测自闭症和社交功能
基本信息
- 批准号:10540333
- 负责人:
- 金额:$ 64.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentAdultAgreementAutism DiagnosisBehaviorBehavioralBiologyCategoriesChildClassificationClinicalClinical TrialsCodeComputer Vision SystemsConsumptionDataData SetDiagnosisDiagnosticDimensionsDiseaseFaceFoundationsGenomicsGenotypeGoalsGrainGrantHumanIndividual DifferencesLimb structureMachine LearningMeasurementMeasuresMental disordersMethodologyMethodsModelingMotionMotorMovementPerformancePersonsPhenotypePlayPropertyPublic HealthPublicationsQuestionnairesReportingReproducibilityResearchRoleSamplingSchemeSchoolsSeveritiesSocial BehaviorSocial FunctioningSocial InteractionSpecificityStatistical ModelsSymptomsTechniquesTechnologyTestingTimeTrainingVideo RecordingWorkautism spectrum disorderautistic childrenbehavioral phenotypingbiological developmentbrain basedcomputer frameworkcomputerizedcostdesigndiagnostic tooldigitaldyadic interactionexperimental studyimpressionindividual variationinformantinnovationinsightlensmachine learning methodmachine learning predictionnatural languageneuroimagingnovelnovel strategiesprecision medicineskillssocialsocial communicationsocial deficitstoolwearable sensor technologyyoung adult
项目摘要
PROJECT SUMMARY
Our innovative and fully automated approach to the analysis of social behavior addresses the pressing
need for precise and scalable measurements of the autism spectrum disorder (ASD) phenotype. Using
computer vision and machine learning methods, we have created a novel, quantitative method for fine-grained
analysis of social interactions. Our approach directly measures interpersonal motor synchrony, a construct which
we use as a lens for understanding the social interaction differences that are at the core of ASD. Significance:
Genomics and neuroimaging methods continuously evolve, providing deeper insights into the biology of ASD.
However, methods for measuring the outward manifestations of ASD have not changed substantially in decades.
ASD is fundamentally a disorder of social interaction, but current clinical tools do not directly measure observable
social interactions. Instead, they summarize global impressions of these interactions via informant report
questionnaires or observational coding schemes that typically lack the behavioral granularity needed to robustly
measure individual differences and changes across time (e.g., treatment related change). Inter-rater agreement
on questionnaires is typically modest, while the alternative “deep phenotyping” by expert clinicians is a time-
consuming and often cost-prohibitive burden to studies, especially when large samples are required (e.g., in
genomics research). Approach: To resolve these problems, our team created a novel computational framework
that leverages advances in markerless video motion capture, computer vision, and machine learning to directly
capture dyadic social interactions. This allows us to capture all behaviors observable by expert clinicians but with
exquisite digital precision and objectivity. Preliminary Data: We developed a fully automatic quantitative
assessment of interpersonal social behavior focused on features of dyadic facial motor synchrony. When applied
to videos of brief conversations between confederates and young adults with or without ASD, our assessment
predicted diagnostic status with 91% accuracy – significantly better than highly trained clinical experts assessing
the same video recordings. The set of predictive social motor synchrony features that we identified also
correlated significantly with symptom severity in the ASD group, suggesting that it can be used for both diagnostic
classification and evaluating individual differences (vital for advancing precision medicine goals). Importantly,
our findings were reproducible across samples: the same features identified in our adult analysis also predicted
diagnosis in a child sample with high accuracy. Aims. In Aim 1, we will test the specificity of our computer vision
approach by expanding comparisons to include a mixed psychiatric disorder group; Aim 2 will test dyadic
synchrony in other body movements, and Aim 3 will define associations between interpersonal motor synchrony
and dimensional aspects of social communication that span diagnostic categories. Impact: Our approach is
designed for fast and rigorous assessment of social communication, providing a scalable solution to diagnosing
ASD diagnosis and measuring individual variability, within a transdiagnostic, precision medicine framework.
项目摘要
我们的创新和全自动化的方法来分析社会行为解决了紧迫的
需要精确和可扩展的自闭症谱系障碍(ASD)表型测量。使用
计算机视觉和机器学习方法,我们已经创造了一种新颖的,定量的方法,
社会互动分析。我们的方法直接测量人际运动同步性,这是一种结构,
我们用它作为一个透镜来理解ASD核心的社会互动差异。重要性:
基因组学和神经影像学方法不断发展,为ASD的生物学提供了更深入的见解。
然而,测量ASD外在表现的方法几十年来没有实质性变化。
ASD从根本上说是一种社会交往障碍,但目前的临床工具不能直接测量可观察到的
社交互动相反,他们通过线人报告总结了这些互动的全球印象
调查问卷或观察编码方案,通常缺乏稳健地
测量个体差异和随时间的变化(例如,治疗相关变化)。评核人间协议
问卷调查通常是温和的,而专家临床医生的替代“深度表型”是一个时间-
这对研究来说是消耗性的并且通常是成本过高的负担,特别是当需要大样本时(例如,在
基因组学研究)。方法:为了解决这些问题,我们的团队创建了一个新的计算框架
利用无标记视频运动捕捉、计算机视觉和机器学习的进步,
捕捉二元社会互动。这使我们能够捕获专家临床医生可观察到的所有行为,
精确的数字化和客观性。初步数据:我们开发了一种全自动定量
人际社会行为的评估侧重于双动面部运动同步性的特征。当应用
到有或没有ASD的联盟者和年轻人之间的简短对话的视频,我们的评估
预测诊断状态的准确率为91%-显著优于训练有素的临床专家评估
同样的录像我们发现的一组预测性社会运动同步特征也
与ASD组的症状严重程度显著相关,这表明它可以用于诊断
分类和评估个体差异(对于推进精准医疗目标至关重要)。重要的是,
我们的研究结果在不同的样本中是可重复的:在我们的成人分析中发现的相同特征也预测了
在儿童样本中的诊断具有高准确性。目标。在目标1中,我们将测试计算机视觉的特异性
通过扩大比较以包括混合精神障碍组的方法; Aim 2将测试二元
目标3将定义人际运动同步性与其他身体运动同步性之间的关联,
和社会沟通的维度方面,跨越诊断类别。影响:我们的方法是
专为快速和严格的社会沟通评估而设计,为诊断提供可扩展的解决方案
ASD诊断和测量个体变异性,在transdiagnosis,精准医学框架内。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gross motor impairment and its relation to social skills in autism spectrum disorder: A systematic review and two meta-analyses.
- DOI:10.1037/bul0000358
- 发表时间:2022-03
- 期刊:
- 影响因子:22.4
- 作者:Wang, Leah A. L.;Petrulla, Victoria;Zampella, Casey J.;Waller, Rebecca;Schultz, Robert T.
- 通讯作者:Schultz, Robert T.
Computational Measurement of Motor Imitation and Imitative Learning Differences in Autism Spectrum Disorder: Computational Motor Imitation Measurement in ASD.
自闭症谱系障碍中运动模仿和模仿学习差异的计算测量:自闭症谱系障碍中的计算运动模仿测量。
- DOI:10.1145/3461615.3485426
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zampella,CaseyJ;Sariyanidi,Evangelos;Hutchinson,AnneG;Bartley,GKeith;Schultz,RobertT;Tunç,Birkan
- 通讯作者:Tunç,Birkan
Discovering Synchronized Subsets of Sequences: A Large Scale Solution.
- DOI:10.1109/cvpr42600.2020.00951
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Sariyanidi E;Zampella CJ;Bartley KG;Herrington JD;Satterthwaite TD;Schultz RT;Tunc B
- 通讯作者:Tunc B
Inequality-Constrained and Robust 3D Face Model Fitting
- DOI:10.1007/978-3-030-58545-7_25
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:E. Sariyanidi;C. Zampella;R. Schultz;B. Tunç
- 通讯作者:E. Sariyanidi;C. Zampella;R. Schultz;B. Tunç
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT Thomas SCHULTZ其他文献
ROBERT Thomas SCHULTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT Thomas SCHULTZ', 18)}}的其他基金
Predicting Autism and Social Functioning from Computer Vision Analyses of Motor Synchrony During Dyadic Interactions
通过计算机视觉对二元交互过程中运动同步的分析来预测自闭症和社交功能
- 批准号:
10057391 - 财政年份:2019
- 资助金额:
$ 64.6万 - 项目类别:
Novel computer vision-based assessment of infant-caregiver synchrony as an early level II screening tool for autism
基于计算机视觉的婴儿-看护者同步性评估作为自闭症早期 II 级筛查工具
- 批准号:
10023938 - 财政年份:2019
- 资助金额:
$ 64.6万 - 项目类别:
Predicting Autism and Social Functioning from Computer Vision Analyses of Motor Synchrony During Dyadic Interactions
通过计算机视觉对二元交互过程中运动同步的分析来预测自闭症和社交功能
- 批准号:
10308068 - 财政年份:2019
- 资助金额:
$ 64.6万 - 项目类别:
Testing the hyperspecificity hypothesis: a neural theory of autism
检验超特异性假说:自闭症的神经理论
- 批准号:
8514729 - 财政年份:2012
- 资助金额:
$ 64.6万 - 项目类别:
Testing the hyperspecificity hypothesis: a neural theory of autism
检验超特异性假说:自闭症的神经理论
- 批准号:
8359473 - 财政年份:2012
- 资助金额:
$ 64.6万 - 项目类别:
Developing a Community-Based ASD Research Registry
开发基于社区的 ASD 研究登记处
- 批准号:
7830900 - 财政年份:2009
- 资助金额:
$ 64.6万 - 项目类别:
相似海外基金
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
- 批准号:
10755168 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
A Priority Setting Partnership to Establish a Patient, Caregiver, and Clinician-identified Research Agenda for Adolescent and Young Adult Cancer in Canada
建立优先合作伙伴关系,以建立患者、护理人员和临床医生确定的加拿大青少年和年轻人癌症研究议程
- 批准号:
480840 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Miscellaneous Programs
Incidence and Time on Onset of Cardiovascular Risk Factors and Cardiovascular Disease in Adult Survivors of Adolescent and Young Adult Cancer and Association with Exercise
青少年和青年癌症成年幸存者心血管危险因素和心血管疾病的发病率和时间以及与运动的关系
- 批准号:
10678157 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Fertility experiences among ethnically diverse adolescent and young adult cancer survivors: A population-based study
不同种族青少年和年轻成年癌症幸存者的生育经历:一项基于人群的研究
- 批准号:
10744412 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Treatment development for refractory leukemia using childhood/adolescent, and young adult leukemia biobank
利用儿童/青少年和青年白血病生物库开发难治性白血病的治疗方法
- 批准号:
23K07305 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular design of Two-Way Player CAR-T cells to overcome disease/antigen heterogeneity of childhood, adolescent, and young adult cancers
双向 CAR-T 细胞的分子设计,以克服儿童、青少年和年轻成人癌症的疾病/抗原异质性
- 批准号:
23H02874 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effects of adolescent social isolation on adult decision making and corticostriatal circuitry
青少年社会隔离对成人决策和皮质纹状体回路的影响
- 批准号:
10756652 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Adolescent trauma produces enduring disruptions in sleep architecture that lead to increased risk for adult mental illness
青少年创伤会对睡眠结构产生持久的破坏,从而导致成人精神疾病的风险增加
- 批准号:
10730872 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别:
Using Tailored mHealth Strategies to Promote Weight Management among Adolescent and Young Adult Cancer Survivors
使用量身定制的移动健康策略促进青少年和年轻癌症幸存者的体重管理
- 批准号:
10650648 - 财政年份:2023
- 资助金额:
$ 64.6万 - 项目类别: