Novel computer vision-based assessment of infant-caregiver synchrony as an early level II screening tool for autism
基于计算机视觉的婴儿-看护者同步性评估作为自闭症早期 II 级筛查工具
基本信息
- 批准号:10023938
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-24 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAgeAge-MonthsBehaviorBehavioralCaregiversCaringChildChildhoodClassificationComputer Vision SystemsComputing MethodologiesDataDevelopmentDevelopmental ProcessDiagnosisDiagnosticDimensionsDiseaseEvaluationEventFaceFoundationsFutureGoalsGrainIndividualIndividual DifferencesInfantInterdisciplinary StudyLifeLow PrevalenceMachine LearningMeasurementMeasuresMethodsModelingMovementParentsPatternPhenotypePlayPredictive ValuePrimary Health CareProcessPublic HealthReportingReproducibility of ResultsResearchRestRiskScreening procedureSeveritiesSocial DevelopmentSocial InteractionSpecificitySymptomsTechnologyTestingTimeTrainingValidationVisitage groupanalysis pipelineautism spectrum disorderbasebehavior measurementbehavior rating scalecomputational pipelinesdigitalearly screeninghigh riskhigh risk infantinfancyinnovationinterdisciplinary approachlensmachine learning methodmembernovelprimary care settingscreeningsocialsupport vector machinetemporal measurementtoolyoung adult
项目摘要
PROJECT SUMMARY
This R21 addresses a critical need for accurate and scalable screening tools able to detect autism spectrum
disorder (ASD) within the first year of life. This project will pilot an innovative digital phenotyping screening
method, which uses computer vision and machine learning to measure synchrony within simple infant-caregiver
interactions. Synchrony refers to the tendency for infants to spontaneously and dynamically coordinate their
behaviors with their caregivers in time. This critical and early-emerging developmental process may provide
unique and precise information about an infant’s risk for ASD, while also offering a lens for understanding early
social interaction differences at the core of ASD. Significance: This project represents a paradigm shift in ASD
screening, moving beyond behavior rating scales toward methods that are better suited to capture the subtle
early indicators of ASD. Caregiver rating scales lack the granularity and objectivity necessary for detecting signs
of ASD that emerge slowly and subtly throughout the first year. Approach: The interdisciplinary study team will
leverage cutting-edge technology to objectively and granularly measure synchrony within 5-minute, play-based
infant-caregiver interactions. Markerless computer vision will be used to quantify facial movements, captured
unobtrusively with small, bidirectional cameras. The dyadic synchrony among infants’ and caregivers’ facial
movements will then be calculated throughout the interaction, as part of an automated machine learning pipeline.
Preliminary Data: We evaluated this approach in young adults with and without ASD during brief conversational
interactions with research staff members. In a machine learning analysis pipeline, synchrony features classified
diagnosis with 91% accuracy - significantly better than expert clinicians assessing the same videos. The same
set of synchrony features significantly predicted symptom severity in the ASD group, suggesting that this method
is effective for both diagnostic classification and dimensional prediction of individual differences. Importantly, the
pipeline also classified diagnosis in children with similarly high accuracy, demonstrating the reproducibility of
results across age groups. Aims. This project extends these computer vision-based methods to infants, with the
overarching goal of evaluating their utility as a Level II screener for ASD. Aim 1 will evaluate the concurrent
validity of our computational measures of interactional synchrony by evaluating their relationships with an
established clinician-administered assessment of early ASD markers. Aim 2 will assess the utility of our
interactional synchrony measure as a Level II screening tool at 12 months, by testing its ability to predict future
ASD diagnosis with high specificity. Impact: This R21 will provide initial validation for a novel, computer vision-
based screener for ASD in infancy. By targeting the dynamics of natural infant-caregiver interactions, this method
has the potential to identify very early signs of disrupted social development, even before classic ASD symptoms
emerge. Moreover, this quick interaction-based screener would fit easily into the context of routine pediatric care,
holding promise as a Level II screener deployable within a universal screening framework.
项目概要
R21 满足了对能够检测自闭症谱系的准确且可扩展的筛查工具的迫切需求
生命第一年内患有自闭症谱系障碍(ASD)。该项目将试点创新的数字表型筛选
方法,使用计算机视觉和机器学习来测量简单婴儿护理人员的同步性
互动。同步性是指婴儿自发地、动态地协调他们的能力的倾向。
及时与他们的照顾者进行行为。这一关键且早期出现的发展过程可能会提供
有关婴儿患自闭症谱系障碍 (ASD) 风险的独特而准确的信息,同时还提供了早期了解的视角
社交互动差异是 ASD 的核心。意义:该项目代表了 ASD 的范式转变
筛选,超越行为评级尺度,转向更适合捕捉微妙之处的方法
ASD 的早期指标。护理人员评级量表缺乏检测迹象所需的粒度和客观性
自闭症谱系障碍(ASD)在第一年缓慢而微妙地出现。方法:跨学科研究小组将
利用尖端技术客观、细致地测量 5 分钟内基于游戏的同步性
婴儿与照顾者的互动。无标记计算机视觉将用于量化捕获的面部运动
使用小型双向相机不引人注意。婴儿和护理人员面部表情的二元同步
然后,作为自动化机器学习管道的一部分,将在整个交互过程中计算运动。
初步数据:我们在简短的对话中评估了患有和不患有自闭症谱系障碍的年轻人的这种方法
与研究人员的互动。在机器学习分析管道中,同步特征分类
诊断准确率高达 91% - 明显优于评估相同视频的专家临床医生。相同
一组同步特征显着预测了 ASD 组的症状严重程度,表明该方法
对于诊断分类和个体差异的维度预测都有效。重要的是,
pipeline 还以同样高的准确度对儿童进行了分类诊断,证明了诊断的可重复性
各个年龄段的结果。目标。该项目将这些基于计算机视觉的方法扩展到婴儿,
总体目标是评估其作为 ASD 二级筛查的效用。目标 1 将评估并发
通过评估交互同步的关系来验证我们的交互同步计算测量的有效性
建立了临床医生对早期 ASD 标志物进行的评估。目标 2 将评估我们的效用
通过测试其预测未来的能力,将交互同步性测量作为 12 个月时的 II 级筛选工具
ASD诊断具有较高的特异性。影响:这款 R21 将为新颖的计算机视觉提供初步验证 -
基于婴儿期 ASD 的筛查。通过针对自然婴儿与护理人员互动的动态,该方法
甚至在典型的自闭症谱系障碍症状出现之前,就有可能识别出社会发展紊乱的早期迹象
出现。此外,这种基于交互的快速筛查仪可以轻松融入常规儿科护理环境中,
有望作为可在通用筛查框架内部署的二级筛查仪。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT Thomas SCHULTZ其他文献
ROBERT Thomas SCHULTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT Thomas SCHULTZ', 18)}}的其他基金
Predicting Autism and Social Functioning from Computer Vision Analyses of Motor Synchrony During Dyadic Interactions
通过计算机视觉对二元交互过程中运动同步的分析来预测自闭症和社交功能
- 批准号:
10057391 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Predicting Autism and Social Functioning from Computer Vision Analyses of Motor Synchrony During Dyadic Interactions
通过计算机视觉对二元交互过程中运动同步的分析来预测自闭症和社交功能
- 批准号:
10540333 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Predicting Autism and Social Functioning from Computer Vision Analyses of Motor Synchrony During Dyadic Interactions
通过计算机视觉对二元交互过程中运动同步的分析来预测自闭症和社交功能
- 批准号:
10308068 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Testing the hyperspecificity hypothesis: a neural theory of autism
检验超特异性假说:自闭症的神经理论
- 批准号:
8514729 - 财政年份:2012
- 资助金额:
$ 22万 - 项目类别:
Testing the hyperspecificity hypothesis: a neural theory of autism
检验超特异性假说:自闭症的神经理论
- 批准号:
8359473 - 财政年份:2012
- 资助金额:
$ 22万 - 项目类别:
Developing a Community-Based ASD Research Registry
开发基于社区的 ASD 研究登记处
- 批准号:
7830900 - 财政年份:2009
- 资助金额:
$ 22万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 22万 - 项目类别:
Research Grants