Optical voltage imaging analysis of the cellular and network mechanisms of deep brain stimulation

深部脑刺激的细胞和网络机制的光电压成像分析

基本信息

  • 批准号:
    10558965
  • 负责人:
  • 金额:
    $ 202.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-21 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Optical voltage imaging analysis of the cellular and network mechanisms of deep brain stimulation Deep brain stimulation (DBS) directly stimulates brain tissue via implanted electrodes. DBS has emerged as a well-established therapy, FDA approved for several neurological and psychiatric disorders, and is increasingly explored for a variety of brain diseases. However, the neurophysiological mechanisms of DBS remain largely unknown. DBS therapeutic outcomes and time courses are diverse and depend on the specific disease conditions targeted. Since DBS effect for movement disorders is consistent with pharmacological lesion or surgical removal of the target brain tissue, DBS was first thought to inhibit local neural activity, likely via membrane depolarization induced action potential blockade or glia mediated adenosine release. However, electrode recordings and biophysical modeling studies suggest that electrical pulses can directly excite axons leading to antidromic activation of neurons projecting to the stimulated area or orthodromic activation of downstream postsynaptic neurons. An alternative theory is that DBS entrains or paces neural activity which interferes with individual neuron’s responding to synaptic inputs and thereby creates information lesion that disrupts pathological network patterns. While these theories are attractive, direct experimental testing of the neurophysiological effects of DBS in the brain has been challenging due to electrical interference on electrode-based recordings. Recently, we pioneered the development of a high-performance genetically encoded voltage indicator SomArchon, which allows optical fluorescence imaging of membrane voltage from individual neurons in awake mammals during behavior. In this study, we will measure the real-time neuronal effect of DBS by performing optical membrane voltage imaging using SomArchon, free of electrical stimulation artifact. We will systematically probe the cellular and network mechanisms of DBS in STN, GPi and VIM, the three FDA approved targets for Parkinson’s disease. Our central hypothesis is that DBS creates information lesion both at the stimulation sites and in the connected circuits, leading to potent disruption of pathological network activities, which underlies the therapeutic mechanisms of DBS.
脑深部电刺激的细胞和网络机制的光电压成像分析脑深部电刺激(DBS)通过植入电极直接刺激脑组织。DBS已成为一种成熟的治疗方法,FDA批准用于多种神经和精神疾病,并越来越多地用于各种脑部疾病。然而,DBS的神经生理学机制在很大程度上仍然未知。DBS治疗结果和时间进程是不同的,并取决于特定的疾病条件的目标。由于DBS对运动障碍的作用与靶脑组织的药理学损伤或手术切除一致,因此DBS首先被认为可能通过膜去极化诱导的动作电位阻滞或神经胶质介导的腺苷释放抑制局部神经活动。然而,电极记录和生物物理建模研究表明,电脉冲可以直接激发轴突,导致投射到受刺激区域的神经元的逆向激活或下游突触后神经元的顺向激活。另一种理论是DBS会引起或调节神经活动,干扰单个神经元对突触输入的反应,从而产生破坏病理网络模式的信息损伤。虽然这些理论很有吸引力,但由于对基于电极的记录的电干扰,DBS在大脑中的神经生理学效应的直接实验测试一直具有挑战性。最近,我们率先开发了一种高性能的遗传编码电压指示器SomArchon,它允许在行为过程中对清醒哺乳动物中单个神经元的膜电压进行光学荧光成像。在这项研究中,我们将通过使用SomArchon进行光学膜电压成像来测量DBS的实时神经元效应,没有电刺激伪影。我们将系统地探索DBS在帕金森病的三个FDA批准的靶点-我们的中心假设是DBS在刺激部位和连接的回路中产生信息损伤,导致病理网络活动的有力破坏,这是DBS治疗机制的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xue Han其他文献

Xue Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xue Han', 18)}}的其他基金

Multidimensional Optimization of Voltage Indicators for In Vivo Neural Activity Imaging
体内神经活动成像电压指示器的多维优化
  • 批准号:
    10553676
  • 财政年份:
    2020
  • 资助金额:
    $ 202.37万
  • 项目类别:
Voltage Imaging Analysis of Striatal Network Dynamics Related to Movement, Parkinson's Disease and Deep Brain Stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动态的电压成像分析
  • 批准号:
    10796253
  • 财政年份:
    2020
  • 资助金额:
    $ 202.37万
  • 项目类别:
Multidimensional Optimization of Voltage Indicators for In Vivo Neural Activity Imaging
体内神经活动成像电压指示器的多维优化
  • 批准号:
    10116488
  • 财政年份:
    2020
  • 资助金额:
    $ 202.37万
  • 项目类别:
Voltage Imaging Analysis of Striatal Network Dynamics Related to Movement, Parkinson's Disease and Deep Brain Stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动态的电压成像分析
  • 批准号:
    10597209
  • 财政年份:
    2020
  • 资助金额:
    $ 202.37万
  • 项目类别:
Voltage imaging analysis of striatal network dynamics related to movement, Parkinson's disease and deep brain stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动力学的电压成像分析
  • 批准号:
    10371974
  • 财政年份:
    2020
  • 资助金额:
    $ 202.37万
  • 项目类别:
Voltage imaging analysis of striatal network dynamics related to movement, Parkinson's disease and deep brain stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动力学的电压成像分析
  • 批准号:
    10588371
  • 财政年份:
    2020
  • 资助金额:
    $ 202.37万
  • 项目类别:
Multidimensional Optimization of Voltage Indicators for In Vivo Neural Activity Imaging
体内神经活动成像电压指示器的多维优化
  • 批准号:
    10333379
  • 财政年份:
    2020
  • 资助金额:
    $ 202.37万
  • 项目类别:
Voltage imaging analysis of striatal network dynamics related to movement, Parkinson's disease and deep brain stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动力学的电压成像分析
  • 批准号:
    10093172
  • 财政年份:
    2020
  • 资助金额:
    $ 202.37万
  • 项目类别:
Cortical Spatial Processing for Solving the Cocktail Party Problem
解决鸡尾酒会问题的皮质空间处理
  • 批准号:
    9753613
  • 财政年份:
    2019
  • 资助金额:
    $ 202.37万
  • 项目类别:
Characterize the functional connectivity of hippocampal adult neurogenesis during critical period
表征关键期海马成人神经发生的功能连接
  • 批准号:
    9092230
  • 财政年份:
    2016
  • 资助金额:
    $ 202.37万
  • 项目类别:

相似国自然基金

细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
  • 批准号:
    81570244
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
  • 批准号:
    81171113
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
  • 批准号:
    10929664
  • 财政年份:
    2023
  • 资助金额:
    $ 202.37万
  • 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
  • 批准号:
    23K14685
  • 财政年份:
    2023
  • 资助金额:
    $ 202.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
  • 批准号:
    10679989
  • 财政年份:
    2023
  • 资助金额:
    $ 202.37万
  • 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
  • 批准号:
    BB/W016974/1
  • 财政年份:
    2023
  • 资助金额:
    $ 202.37万
  • 项目类别:
    Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
  • 批准号:
    23K07566
  • 财政年份:
    2023
  • 资助金额:
    $ 202.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
  • 批准号:
    10760676
  • 财政年份:
    2023
  • 资助金额:
    $ 202.37万
  • 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
  • 批准号:
    10605737
  • 财政年份:
    2023
  • 资助金额:
    $ 202.37万
  • 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
  • 批准号:
    2319114
  • 财政年份:
    2023
  • 资助金额:
    $ 202.37万
  • 项目类别:
    Standard Grant
The Biology of Microglia: Adenosine A3 Receptor Suppression
小胶质细胞的生物学:腺苷 A3 受体抑制
  • 批准号:
    RGPIN-2019-06289
  • 财政年份:
    2022
  • 资助金额:
    $ 202.37万
  • 项目类别:
    Discovery Grants Program - Individual
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
  • 批准号:
    573323-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 202.37万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了