Multidimensional Optimization of Voltage Indicators for In Vivo Neural Activity Imaging

体内神经活动成像电压指示器的多维优化

基本信息

  • 批准号:
    10116488
  • 负责人:
  • 金额:
    $ 70.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

In recent years there has been much excitement about genetically encoded fluorescent indicators of neural activity, with new molecules such as the genetically encoded calcium indicator GCaMP6 being used to image the activity of many neurons at once in living brains. However, such indicators are slow, raising the question of whether voltage indicators will become useful enough to be widespread in neuroscience. Furthermore, imaging of axons and dendrites remains difficult, especially in densely expressing tissues. For example, when neurons express such reporters densely, axons and dendrites within the diffraction limit of light will have their signals mixed, so that the signals of individual neural processes cannot be resolved. How can we push the spatiotemporal performance of neural activity imaging to the specifications desired by neuroscientists – down to the millisecond timescale, and down to the sub-micron scale axonal and dendritic parts of neurons? We here propose to address this problem through molecular engineering, guided by in vivo imaging constraints. To address the spatial dimension: if neural activity indicators could be safely clustered into discrete, bright puncta that, even when expressed in all the cells of a neural circuit, are separated from one another by a distance greater than the diffraction limit of the imaging system, then these puncta could cleanly be imaged, and used to sample activity along axons and dendrites of the neurons in a circuit. In this grant, we will (Aim 1) create and validate this strategy, which we call stochastic arrangement of reagents in clusters (STARC). In this way, we will effectively point the way towards circuit-wide neural activity imaging that allows for the investigation of axonal signaling and dendritic processing, and not only cell body imaging. To address the temporal dimension: we will create optimized fluorescent voltage indicators (Aim 2). Pioneering efforts have resulted in fluorescent voltage indicators, but their performance is often poor when utilized in the brain, because of poor trafficking and membrane localization that manifests in vivo, since neurons in vivo are different from the cultured cells used to screen for the voltage sensors. We will conduct an in situ screen to directly identify fluorescent voltage indicators that work well in neurons in intact mouse brain circuits, by virally expressing members of a library of mutant voltage indicators directly in the mouse brain, imaging the responses with single cell resolution in mouse brain slices, and then directly reading out the mutations that yielded the voltage indicators that best perform in actual brain circuits, validating the resultant indicators in the mouse brain. We will also create (Aim 3) STARC forms of voltage sensors, since the proximity issues discussed in Aim 1 are even more severe when a neural activity reporter is on a neural membrane that is in close proximity to other membranes. We will close the loop by testing all such indicators in vivo and then iterating on the molecular engineering, delivering to the neuroscience community a powerful, simple-to-use toolbox that can be rapidly deployed for ultraprecise – across both space (via STARC) and time (via in situ optimized voltage indicators) -- neural activity imaging.
近年来,关于遗传编码的神经细胞荧光指示剂已经引起了很大的兴趣。 活性,新的分子,如遗传编码的钙指标GCaMP 6被用来成像 在活体大脑中许多神经元同时活动。然而,这些指标进展缓慢,提出了一个问题, 电压指示器是否会变得足够有用,在神经科学中广泛使用。此外,成像 轴突和树突的分离仍然是困难的,特别是在密集表达的组织中。例如,当神经元 密集地表达这种报告分子,在光的衍射极限内的轴突和树突将具有它们的信号 混合,因此单个神经过程的信号不能被解析。我们如何推动 神经活动成像的时空性能达到神经科学家所需的规格-低至 从毫秒级的时间尺度,到亚微米级的神经元轴突和树突部分?我们这里 建议通过分子工程,在体内成像约束的指导下解决这个问题。到 解决空间维度:如果神经活动指标可以安全地聚集到离散的,明亮的点 即使在神经回路的所有细胞中表达, 大于成像系统的衍射极限,则这些斑点可以被干净地成像,并用于 沿着回路中神经元的轴突和树突的沿着活动的样本。在这一点上,我们将(目标1)创造和 验证这种策略,我们称之为随机安排的试剂在集群(STARC)。这样我们 将有效地为全回路神经活动成像指明道路,从而可以研究轴突 信号传导和树突处理,而不仅仅是细胞体成像。为了解决时间维度:我们将 创建优化的荧光电压指示器(目标2)。开创性的努力导致了荧光电压 指标,但在大脑中使用时,其性能往往很差,因为贩运和 在体内表现的膜定位,因为体内的神经元不同于用于 电压传感器的屏幕。我们将进行现场筛选,直接识别荧光电压指示器 通过病毒表达突变体库的成员, 直接在小鼠大脑中的电压指示器,在小鼠大脑中以单细胞分辨率成像响应 切片,然后直接阅读产生在实际中表现最佳的电压指示器的突变。 大脑回路,验证小鼠大脑中的结果指标。我们还将创建(目标3)STARC表单 的电压传感器,因为在目标1中讨论的接近性问题,甚至更严重时,神经活动 报告基因位于神经膜上,与其他膜非常接近。我们将通过测试来关闭循环 所有这些指标都在体内,然后在分子工程上迭代, 社区是一个功能强大、易于使用的工具箱,可以快速部署,以实现超精密-跨越两个领域 (via STARC)和时间(通过原位优化的电压指示器)-神经活动成像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xue Han其他文献

Xue Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xue Han', 18)}}的其他基金

Optical voltage imaging analysis of the cellular and network mechanisms of deep brain stimulation
深部脑刺激的细胞和网络机制的光电压成像分析
  • 批准号:
    10558965
  • 财政年份:
    2022
  • 资助金额:
    $ 70.74万
  • 项目类别:
Multidimensional Optimization of Voltage Indicators for In Vivo Neural Activity Imaging
体内神经活动成像电压指示器的多维优化
  • 批准号:
    10553676
  • 财政年份:
    2020
  • 资助金额:
    $ 70.74万
  • 项目类别:
Voltage Imaging Analysis of Striatal Network Dynamics Related to Movement, Parkinson's Disease and Deep Brain Stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动态的电压成像分析
  • 批准号:
    10796253
  • 财政年份:
    2020
  • 资助金额:
    $ 70.74万
  • 项目类别:
Voltage Imaging Analysis of Striatal Network Dynamics Related to Movement, Parkinson's Disease and Deep Brain Stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动态的电压成像分析
  • 批准号:
    10597209
  • 财政年份:
    2020
  • 资助金额:
    $ 70.74万
  • 项目类别:
Voltage imaging analysis of striatal network dynamics related to movement, Parkinson's disease and deep brain stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动力学的电压成像分析
  • 批准号:
    10371974
  • 财政年份:
    2020
  • 资助金额:
    $ 70.74万
  • 项目类别:
Voltage imaging analysis of striatal network dynamics related to movement, Parkinson's disease and deep brain stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动力学的电压成像分析
  • 批准号:
    10588371
  • 财政年份:
    2020
  • 资助金额:
    $ 70.74万
  • 项目类别:
Multidimensional Optimization of Voltage Indicators for In Vivo Neural Activity Imaging
体内神经活动成像电压指示器的多维优化
  • 批准号:
    10333379
  • 财政年份:
    2020
  • 资助金额:
    $ 70.74万
  • 项目类别:
Voltage imaging analysis of striatal network dynamics related to movement, Parkinson's disease and deep brain stimulation
与运动、帕金森病和深部脑刺激相关的纹状体网络动力学的电压成像分析
  • 批准号:
    10093172
  • 财政年份:
    2020
  • 资助金额:
    $ 70.74万
  • 项目类别:
Cortical Spatial Processing for Solving the Cocktail Party Problem
解决鸡尾酒会问题的皮质空间处理
  • 批准号:
    9753613
  • 财政年份:
    2019
  • 资助金额:
    $ 70.74万
  • 项目类别:
Characterize the functional connectivity of hippocampal adult neurogenesis during critical period
表征关键期海马成人神经发生的功能连接
  • 批准号:
    9092230
  • 财政年份:
    2016
  • 资助金额:
    $ 70.74万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.74万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了