Deep Learning-based Framework for Segmentation and Motion Tracking of Left Ventricle in 3D Echocardiography
基于深度学习的 3D 超声心动图左心室分割和运动跟踪框架
基本信息
- 批准号:10563111
- 负责人:
- 金额:$ 3.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAcute myocardial infarctionAddressAlgorithmsAppearanceAreaAssessment toolAttentionCardiacCause of DeathClinicalCommunitiesCongestive Heart FailureCoronary ArteriosclerosisCrystallizationDataData SetDetectionDiagnosisDisadvantagedEchocardiographyEffectivenessEventExerciseFellowshipFunctional disorderGoalsGoldHeartHigh Resolution Computed TomographyImageImage AnalysisImaging TechniquesImplantInfarctionInjuryInterobserver VariabilityIschemiaLabelLeadLearningLeft Ventricular RemodelingLeft ventricular structureManualsMapsMeasurementMechanicsMedical ImagingMethodsModelingMorbidity - disease rateMotionMyocardialMyocardial InfarctionMyocardiumNatureNeural Network SimulationNoiseOrganPatientsPatternPerformancePharmacologyProcessPublic HealthRadialResearchRestShapesSignal TransductionStressStress EchocardiographySurfaceTherapeuticThree-Dimensional EchocardiographyTimeTrainingTwo-Dimensional EchocardiographyUnited StatesVisualWorkX-Ray Computed Tomographybasecanine modelclinical practiceconvolutional neural networkcost effectivedeep learningdeep learning algorithmfeature extractionheart functionheart imagingimaging modalityimprovedmortalitymyocardial injuryneural networkneural network architecturenoveloutcome predictionradio frequencyscreeningsegmentation algorithmspatiotemporaltooltwo-dimensionalvector
项目摘要
PROJECT SUMMARY/ABSTRACT
Coronary artery disease remains the leading cause of death around the world. Acute myocardial infarction (MI)
causes regional dysfunction which places remote areas of the heart at a mechanical disadvantage resulting in
long term adverse left ventricular (LV) remodeling and complicated congestive heart failure (CHF). Stress
echocardiography is currently the clinically established, cost-effective 2D imaging technique for detecting and
characterizing myocardial injury by imaging the left ventricle at rest and after either exercise or
pharmacologically-induced stress to reveal ischemia and/or infarct. However, the inherent limitations of a 2D
echocardiography make it difficult to characterize the whole 3D volume of ischemic/infarct zone, and the
qualitative assessment of wall-motion abnormality to characterize myocardial deformation leads to variability
among experts. Although 3D echocardiography has potential to address the limitations of 2D imaging, it is not
widely accepted in standard clinical use due to the low signal-to-noise ratio (SNR). With the recent advancements
in deep learning algorithms, many segmentation and registration tasks have achieved near expert level accuracy.
Also, previous works have shown the utility of strain analysis as a way to quantify the degree of wall-motion
abnormality in cardiac imaging modalities. Still, many of the current deep learning frameworks focus largely on
intensity-based features which are still difficult to train on 3D echocardiography datasets, which in turn leads to
poor strain analysis. Thus, in this fellowship, I propose to develop novel data-driven neural network models
specifically tailored to 3D echocardiography to improve segmentation and motion tracking of left ventricle in order
to achieve full 3D cardiac strain analysis. My first aim is to develop a multi-frame attention-based neural
network to exploit the spatiotemporal features of the echocardiography dataset to improve 3D
segmentation of left ventricle. This method will take advantage of the inter-frame spatiotemporal features to
augment the relevant feature extractions for segmentation. My second aim is to develop a registration neural
network in 3D echocardiography by combining intensity-based features and surface-curvature bending
energy to improve the motion tracking of left ventricle. This neural network will build upon the accurate
segmentations from the first aim to include unique curvature energy features at the boundaries to enhance
tracking accuracy at all areas of the myocardium. The improved motion tracking will be used to calculate strain
for detection of full 3D ischemic/infarct zones. In summary, this research will provide an objective, quantitative
tools for characterizing wall-motion abnormality with strain analysis in 3D echocardiography.
项目摘要/摘要
冠状动脉疾病仍然是世界上主要的死亡原因。急性心肌梗死(MI)
导致局部功能障碍,使心脏偏远区域处于机械劣势,导致
长期不良左心室(LV)重构和并发充血性心力衰竭(CHF)。压力
超声心动图是目前临床上公认的、经济有效的二维成像技术,用于检测和
通过静息和运动或运动后的左心室成像来表征心肌损伤
药物诱导的应激反应表现为缺血和/或脑梗塞。然而,2D的固有限制
超声心动图很难表征缺血/梗死区的全部3D体积,而
定性评估室壁运动异常以表征心肌变形导致变异性
在专家中。虽然3D超声心动图有潜力解决2D成像的局限性,但它不是
由于低信噪比(SNR),在标准的临床应用中被广泛接受。随着最近的进步
在深度学习算法中,许多分割和配准任务已经达到了接近专家级别的精度。
此外,以前的工作已经表明,应变分析作为一种量化室壁运动程度的方法是有用的
心脏影像检查中的异常。尽管如此,目前的许多深度学习框架主要集中在
基于强度的特征,这些特征仍然难以在3D超声心动图数据集上进行训练,这反过来又导致
菌株分析很差。因此,在这项研究中,我建议开发新的数据驱动的神经网络模型
专为3D超声心动图量身定做,可按顺序改进左心室分割和运动跟踪
以实现全三维心脏应变分析。我的第一个目标是开发一种基于多帧注意力的神经
利用超声心动图数据集的时空特征来改进3D的网络
左心室的节段性。该方法将利用帧间时空特征来
增强了相关的特征提取,用于分割。我的第二个目标是发展一个注册神经
结合强度特征和表面曲率弯曲的三维超声心动图网络
能量,以改善左心室的运动跟踪。这个神经网络将建立在准确的
从第一个目标开始的分割旨在包括边界处的独特曲率能量特征以增强
准确跟踪心肌的所有区域。改进的运动跟踪将用于计算应变
用于检测全3D缺血/梗死区。综上所述,本研究将提供一个客观、定量的
三维超声心动图应变分析表征室壁运动异常的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shawn Ahn其他文献
Shawn Ahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shawn Ahn', 18)}}的其他基金
Deep Learning-based Framework for Segmentation and Motion Tracking of Left Ventricle in 3D Echocardiography
基于深度学习的 3D 超声心动图左心室分割和运动跟踪框架
- 批准号:
10231860 - 财政年份:2021
- 资助金额:
$ 3.16万 - 项目类别:
Deep Learning-based Framework for Segmentation and Motion Tracking of Left Ventricle in 3D Echocardiography
基于深度学习的 3D 超声心动图左心室分割和运动跟踪框架
- 批准号:
10666687 - 财政年份:2021
- 资助金额:
$ 3.16万 - 项目类别:
相似海外基金
Non-invasive coronary thrombus imaging to define the cause of acute myocardial infarction
无创冠状动脉血栓显像可明确急性心肌梗塞的病因
- 批准号:
MR/Y009770/1 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Fellowship
Impact of COVID-19 pandemic on pathophysiology of acute myocardial infarction and emergency cardiovascular care system
COVID-19大流行对急性心肌梗死病理生理学和心血管急诊系统的影响
- 批准号:
23K15160 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Extreme Heat and Acute Myocardial Infarction: Effect Modifications by Sex, Medical History, and Air Pollution
酷热和急性心肌梗塞:性别、病史和空气污染的影响
- 批准号:
10709134 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Development of a multi-RNA signature in blood towards a rapid diagnostic test to robustly distinguish patients with acute myocardial infarction
开发血液中的多 RNA 特征以进行快速诊断测试,以强有力地区分急性心肌梗死患者
- 批准号:
10603548 - 财政年份:2023
- 资助金额:
$ 3.16万 - 项目类别:
Effectiveness of Strategies to Improve Outcomes after Hospitalization for Acute Myocardial Infarction in Older Adults
改善老年人急性心肌梗死住院后预后的策略的有效性
- 批准号:
10576349 - 财政年份:2022
- 资助金额:
$ 3.16万 - 项目类别:
Establishment of the emergency transport decision making program for patients with acute myocardial infarction using artificial intelligence (AI)
利用人工智能(AI)建立急性心肌梗死患者紧急转运决策方案
- 批准号:
22K09185 - 财政年份:2022
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Federated Learning Strategies for Disease Surveillance Using Cross-Jurisdiction Electronic Medical Records without Data Sharing: With Applications to Acute Myocardial Infarction, Hypertension, and Sepsis Detection
使用跨辖区电子病历(无需数据共享)开发疾病监测联合学习策略:在急性心肌梗塞、高血压和脓毒症检测中的应用
- 批准号:
468573 - 财政年份:2022
- 资助金额:
$ 3.16万 - 项目类别:
Operating Grants
Evaluation of effect of intracoronary supersaturated oxygen therapy on inhibition of no reflow phenomenon in acute myocardial infarction
冠状动脉内过饱和氧治疗抑制急性心肌梗死无复流现象的效果评价
- 批准号:
22K08135 - 财政年份:2022
- 资助金额:
$ 3.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effectiveness of Strategies to Improve Outcomes after Hospitalization for Acute Myocardial Infarction in Older Adults
改善老年人急性心肌梗死住院后预后的策略的有效性
- 批准号:
10339915 - 财政年份:2022
- 资助金额:
$ 3.16万 - 项目类别:
The Personalising Acute Myocardial Infarction Care to improve Outcomes (PAMICO Project)
个性化急性心肌梗死护理以改善结果(PAMICO 项目)
- 批准号:
nhmrc : 2005797 - 财政年份:2021
- 资助金额:
$ 3.16万 - 项目类别:
Partnership Projects














{{item.name}}会员




