Specialized cell cycles in early erythropoiesis
早期红细胞生成的特殊细胞周期
基本信息
- 批准号:10665584
- 负责人:
- 金额:$ 43.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAbnormal CellAccelerationAnemiaBone MarrowBromodeoxyuridineCFU-ECell CycleCell Cycle RegulationCell DensityCell Differentiation processCell ProliferationCell divisionCellsChromatinCoupledDNADNA replication forkDataDevelopmentDevelopmental Delay DisordersDevelopmental ProcessDrosophila genusEmbryonic DevelopmentErythrocytesErythroidErythroid CellsErythropoiesisErythropoietin ReceptorEventFailureFetal LiverG1 PhaseGene ExpressionGenesGenetic TranscriptionGoalsHemoglobinHomeostasisIndividualLengthLinkMammalian CellMeasurementMediatorMitoticModelingModificationMusMutant Strains MiceNaturePharmaceutical PreparationsPhaseProcessPublishingRegulationReporterRoleS phaseScienceSignal TransductionSpeedStressTestingTimeValidationWorkXenopuscell growthfunctional outcomesgenetic manipulationgenome-widein vivoinhibitorinnovationinsightmodel organismnovelnucleotide analogpreventprogenitorself-renewalsingle-cell RNA sequencingstem cellstranscription factortranscriptometranscriptomicstranslational goal
项目摘要
Project Summary
In essentially all lineages, the cell cycle is quiescent in stem cells, and undergoes mitotic exit in terminally
differentiated cells. In the intervening developmental period, however, cell cycles have been regarded as
‘generic’, regulated only with respect to their number, so as to maintain homeostasis or respond to stress. The
generic view of the mammalian cell cycle contrasts with the specialized cell cycles of early embryonic
development in model organisms such as Drosophila or Xenopus, where cell cycle control, including dramatic
changes in cell cycle length, are intimately linked to developmental events. Our recently published work,
including a single-cell transcriptomic analysis of the mouse erythroid trajectory and a study of replication fork
dynamics in early erythropoiesis has uncovered the presence of specialized cell cycles throughout mammalian
erythroid development. Our principal hypothesis is that developmental-stage-specific specializations of the cell
cycle are integral to the process of differentiation, and regulate both incremental changes such as cell growth,
as well as switch-like cell fate decisions. In this proposal, we investigate cell cycle specialization in early
erythropoiesis, orchestrated around the time of a key cell fate switch, from self-renewal of CFU-e progenitors, to
erythroid terminal differentiation (ETD). We found that, preceding this switch, there is progressive shortening of
G1; and that, at the switch, there is an abrupt shortening of S phase. Further, S phase shortening is the result of
a novel mechanism of regulating S phase length, through a global increase in replication fork speed. In this
proposal, we will investigate both the mechanisms, as well as the functional outcomes, of these cell cycle
specializations. In AIM 1, we will carry out functional analysis of four erythroid regulators: E2F4, KLF1, EpoR
and Stat5. Using mice mutant for each of these regulators, we will determine their roles in erythroid cell cycle
specializations and consequent developmental decisions. In AIM 2, we will carry out single-cell RNA-seq analysis
of progenitors deleted for each of the four regulators. We will order cell transcriptomes to generate the erythroid
developmental pesudotime, and determine abnormalities along this pseudotime, including failure to upregulate
replication genes, abnormal cell densities that might reflect developmental delays or arrest, and cell cycle phase
for each cell. We will correlate any abnormalities at the single cell level. In AIM 3, we will determine whether S
phase shortening is required for the CFU-e / ETD switch, using a variety of drugs and genetic manipulation to
prevent, or accelerate, S phase shortening, and examine the consequent effect on the CFU-e/ETD switch.
Further, we will examine the potential role of S phase shortening in modifying chromatin accessibility at the CFU-
e/ETD switch. IMPACT: this proposal deals with innovative cell cycle modifications that might directly regulate
the developmental process. Specifically, delaying the CFU-e/ETD switch with cell cycle modifying drugs results
in amplification of CFU-e, a translational goal in the treatment of anemia.
项目摘要
在基本上所有的谱系中,干细胞的细胞周期是静止的,并且在终末经历有丝分裂退出。
分化细胞然而,在中间发育期,细胞周期被认为是
“一般性的”,仅在数量上受到调节,以维持体内平衡或对压力作出反应。的
哺乳动物细胞周期的一般观点与早期胚胎细胞的特化细胞周期形成对比。
在模式生物如果蝇或非洲爪蟾中,细胞周期控制,包括戏剧性的
细胞周期长度的变化与发育事件密切相关。我们最近发表的作品,
包括对小鼠红细胞轨迹的单细胞转录组学分析和对复制叉的研究。
早期红细胞生成的动力学已经揭示了在整个哺乳动物中存在特化的细胞周期,
红细胞发育我们的主要假设是,细胞的发育阶段特异性特化
周期是分化过程的组成部分,并调节细胞生长等增量变化,
以及类似开关的细胞命运决定。在这个提议中,我们研究了细胞周期的早期特化,
红细胞生成,围绕关键细胞命运转换的时间精心安排,从CFU-e祖细胞的自我更新,
红系终末分化(ETD)。我们发现,在这个转换之前,
G1;并且在开关处,存在S相的突然缩短。此外,S相缩短是以下因素的结果:
一种新的机制,调节S相长度,通过全球增加复制叉速度。在这
建议,我们将调查的机制,以及功能的结果,这些细胞周期
专业化。在AIM 1中,我们将对E2 F4、KLF 1、EpoR四种红系调节因子进行功能分析
的Stat 5。利用这些调节因子的突变小鼠,我们将确定它们在红系细胞周期中的作用
专业化和随之而来的发展决策。在AIM 2中,我们将进行单细胞RNA-seq分析
四个调节子中每一个都有祖细胞被删除。我们会用细胞转录组生成红细胞
发育假时,并确定异常沿着这一假时,包括未能上调
复制基因,可能反映发育延迟或停滞的异常细胞密度,以及细胞周期阶段
对于每个细胞。我们将在单细胞水平上联系任何异常。在AIM 3中,我们将确定S是否
CFU-e / ETD转换需要缩短时相,使用各种药物和遗传操作,
防止或加速S期缩短,并检查对CFU-e/ETD转换的后续影响。
此外,我们还将研究S期缩短在修饰CFU-100上染色质可及性中的潜在作用。
e/ETD开关。影响:该提案涉及创新的细胞周期修饰,可能直接调节
发展过程。具体地说,用细胞周期修饰药物延迟CFU-e/ETD转换导致
CFU-e扩增,这是治疗贫血的一个转化目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Merav Socolovsky其他文献
Merav Socolovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Merav Socolovsky', 18)}}的其他基金
EpoR & Stat5 regulation of ribosome biogenesis and protein synthesis in erythropoiesis
EPR
- 批准号:
10682214 - 财政年份:2023
- 资助金额:
$ 43.6万 - 项目类别:
Specialized cell cycles in early erythropoiesis
早期红细胞生成的特殊细胞周期
- 批准号:
10449211 - 财政年份:2019
- 资助金额:
$ 43.6万 - 项目类别:
Specialized cell cycles in early erythropoiesis
早期红细胞生成的特殊细胞周期
- 批准号:
10016280 - 财政年份:2019
- 资助金额:
$ 43.6万 - 项目类别:
Specialized cell cycles in early erythropoiesis
早期红细胞生成的特殊细胞周期
- 批准号:
10214602 - 财政年份:2019
- 资助金额:
$ 43.6万 - 项目类别:
Epigenetic and Cell Cycle Functions of Glucocorticoids in Erythropoietic Stress
糖皮质激素在红细胞生成应激中的表观遗传和细胞周期功能
- 批准号:
8761895 - 财政年份:2014
- 资助金额:
$ 43.6万 - 项目类别:
Epigenetic and Cell Cycle Functions of Glucocorticoids in Erythropoietic Stress
糖皮质激素在红细胞生成应激中的表观遗传和细胞周期功能
- 批准号:
9064125 - 财政年份:2014
- 资助金额:
$ 43.6万 - 项目类别:
Epigenetic and Cell Cycle Functions of Glucocorticoids in Erythropoietic Stress
糖皮质激素在红细胞生成应激中的表观遗传和细胞周期功能
- 批准号:
9273522 - 财政年份:2014
- 资助金额:
$ 43.6万 - 项目类别:
The Role of RB Family Proteins in an S Phase-Dependent Erythroid Commitment Step
RB 家族蛋白在 S 相依赖性红细胞承诺步骤中的作用
- 批准号:
8446029 - 财政年份:2013
- 资助金额:
$ 43.6万 - 项目类别:
DNA Replication and Genome-Wide Demethylation in Erythropoiesis
红细胞生成过程中的 DNA 复制和全基因组去甲基化
- 批准号:
8824527 - 财政年份:2013
- 资助金额:
$ 43.6万 - 项目类别:
DNA Replication and Genome-Wide Demethylation in Erythropoiesis
红细胞生成过程中的 DNA 复制和全基因组去甲基化
- 批准号:
8563099 - 财政年份:2013
- 资助金额:
$ 43.6万 - 项目类别:
相似海外基金
Mechanical sensing mechanism of abnormal cell clusters by surrounding normal cells
周围正常细胞对异常细胞簇的机械传感机制
- 批准号:
20K20189 - 财政年份:2020
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rvb1 and Rvb2 are physically and functionally connected during normal and abnormal cell growth
Rvb1 和 Rvb2 在正常和异常细胞生长过程中在物理和功能上相连
- 批准号:
352398 - 财政年份:2016
- 资助金额:
$ 43.6万 - 项目类别:
"Born to be Bad": Is Abnormal Cell Mobility Already Present At Initiation?
“生来就是坏的”:异常的细胞迁移性是否在开始时就已经存在?
- 批准号:
8686657 - 财政年份:2014
- 资助金额:
$ 43.6万 - 项目类别:
Molecular mechanisms of abnormal cell proliferation in acute lymphoblastic leukemia of Down syndrome
唐氏综合征急性淋巴细胞白血病细胞异常增殖的分子机制
- 批准号:
23591527 - 财政年份:2011
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of abnormal cell polarity in brain tumor cells
脑肿瘤细胞异常细胞极性分析
- 批准号:
21591887 - 财政年份:2009
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of abnormal cell proliferation in transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome
唐氏综合症短暂性骨髓增生性疾病和急性巨核细胞白血病细胞异常增殖的分子机制
- 批准号:
20591241 - 财政年份:2008
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of cell adhesion signaling in the abnormal cell polarization of cancer cells
细胞粘附信号在癌细胞异常细胞极化中的作用
- 批准号:
17014055 - 财政年份:2005
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Creation and analysis of animal model monitoring abnormal cell replication
监测异常细胞复制的动物模型的创建和分析
- 批准号:
16380194 - 财政年份:2004
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cl^-homeostasis failure and abnormal cell migration by endocrine disruptor cause damage to nervous system
内分泌干扰物导致的Cl^-稳态失灵和异常细胞迁移导致神经系统损伤
- 批准号:
15590207 - 财政年份:2003
- 资助金额:
$ 43.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ROLES OF PLEIOTROPHIN IN NORMAL AND ABNORMAL CELL GROWTH
多效素在正常和异常细胞生长中的作用
- 批准号:
2683586 - 财政年份:1995
- 资助金额:
$ 43.6万 - 项目类别: