Refining neurophysiological biomarkers of epilepsy using deep learning to guide pediatric epilepsy surgery
利用深度学习完善癫痫的神经生理学生物标志物来指导小儿癫痫手术
基本信息
- 批准号:10664790
- 负责人:
- 金额:$ 24.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAreaBehavioralBiologicalBiological MarkersBrainBrain regionCharacteristicsChildChildhoodChronicClinicalClinical ResearchClinical TrialsDataElectroencephalographyEpilepsyEvaluationExcisionFreedomFrequenciesGoalsHandHigh Frequency OscillationImageJointsK-Series Research Career ProgramsKnowledgeLabelLanguageLinkMapsMentorsMentorshipMethodsMicroelectrodesModelingMorbidity - disease rateMorphologyNeocortexNeuronsOperative Surgical ProceduresOutcomePartial EpilepsiesPathologicPharmaceutical PreparationsPhysiciansPhysiologicalPostoperative PeriodPropertyProspective cohortResearchResearch PersonnelResistanceRetrospective cohortScientistSeizuresSignal TransductionSiteSynaptic PotentialsTestingTimeTrainingVisionWorkbiomarker identificationbrain abnormalitiesbrain tissuechildhood epilepsycohortcortex mappingdeep learningdeep learning algorithmdeep learning modeldexterityfeasibility testinglarge datasetsmortalityneocorticalneurophysiologyneuroregulationnovelpostsynapticpredictive modelingpreservationsecondary analysissignal processingskill acquisitionskillsstatisticstheoriestooltwo-dimensional
项目摘要
PROJECT SUMMARY/ABSTRACT
Dr. Hiroki Nariai is a pediatric epileptologist/clinical neurophysiologist whose long-term goal is to be a leading
physician-scientist in pediatric epilepsy, using key biomarkers to effectively treat children with epilepsy and
reduce their mortality and morbidity. In this project, Dr. Nariai proposes to study medication-resistant focal
epilepsy in children by integrating computational electroencephalogram (EEG) analysis, deep learning, and
advanced statistics to investigate and validate high-frequency oscillations (HFOs)—a promising spatial
biomarker of the epileptic brain. More than one-third of children with epilepsy are resistant to medications and
are therefore potential candidates for epilepsy surgery. To achieve postoperative seizure freedom, one must
remove or disrupt the epileptogenic zone (EZ), defined as the brain area that is indispensable for generating
seizures, while preserving the eloquent cortex (EC), defined as the brain area that controls essential functions.
Thus, identifying biomarkers that accurately localize and discriminate EZ from EC will be groundbreaking. HFOs
are recorded via intracranial EEG as short bursts of high-frequency neuronal activity and are often observed in
EZ. However, the major challenge is that physiological HFOs generated by healthy brain tissue complicate the
clinical interpretation of HFOs. Therefore, there is a critical need to distinguish between pathological and
physiological HFOs. Dr. Nariai hypothesizes that deep learning-based algorithms can distinguish pathological
and physiological HFOs based on subtle morphological features linked to specific biological mechanisms.
Through this K23 career development award, Dr. Nariai proposes to accomplish the following training goals: (1)
acquire skills in an advanced computational EEG analysis to enable customized quantification of HFOs in a large
dataset, (2) gain knowledge of the theory of deep learning and skills in its application in EEG signal processing
to enable morphological assessment of HFOs, and (3) develop proficiency in advanced statistics in clinical
research to validate prediction models and gain knowledge in clinical trials. Under the joint mentorship of leading
researchers led by Dr. Jerome Engel, Jr., at UCLA, Dr. Nariai will build deep learning-based models in a large
retrospective cohort to define HFOs expressed in EZ (eHFOs) to represent pathological HFOs. In addition, HFOs
expressed in EC (ecHFOs) will be defined to represent physiological HFOs. The trained classifier will be analyzed
to obtain the computational definition of eHFOs and ecHFOs. Along with demonstrating that real-time HFO
analysis is feasible in a prospective cohort, eHFOs and ecHFOs will be analyzed to prove that HFOs can localize
and discriminate EZ from EC. Dr. Nariai has shown preliminary results supporting the feasibility of his proposed
approach. Completing the proposed goals will provide significant progress toward utilizing HFOs as a clinically
useful spatial biomarker of the epileptic brain to guide epilepsy surgery, which Dr. Nariai plans to pursue as an
R01 project.
项目摘要/摘要
Hroki Nariai博士是一位儿科癫痫专家/临床神经生理学家,他的长期目标是成为领先的
儿科癫痫内科科学家,使用关键生物标记物有效治疗儿童癫痫和
降低他们的死亡率和发病率。在这个项目中,Nariai博士建议研究耐药灶
通过整合计算脑电(EEG)分析、深度学习和
研究和验证高频振荡(HFO)的高级统计数据--一个很有前途的空间
癫痫脑的生物标志物。超过三分之一的癫痫儿童对药物和
因此是癫痫手术的潜在候选者。要实现术后癫痫的自由,必须
移除或干扰致痫区域(EZ),EZ被定义为大脑产生癫痫所必需的区域
癫痫发作,在保留口才皮层(EC)的同时,被定义为控制基本功能的大脑区域。
因此,识别准确定位和区分EZ和EC的生物标志物将是开创性的。HFO
通过颅内脑电记录为高频神经元活动的短脉冲,常见于
艾兹。然而,主要的挑战是,由健康的脑组织产生的生理性HFO使
高脂血症的临床解释。因此,迫切需要区分病理性和非病理性
生理性HFO。Nariai博士假设,基于深度学习的算法可以区分病理性
以及基于与特定生物学机制相关联的微妙形态特征的生理性HFO。
通过这个K23职业发展奖,Nariai博士建议实现以下培训目标:(1)
掌握高级计算脑电分析的技能,以实现对大量HFO的定制量化
数据集,(2)了解深度学习理论及其在脑电信号处理中的应用技巧
实现对HFO的形态评估,以及(3)熟练掌握临床高级统计知识
在临床试验中验证预测模型和获取知识的研究。在Leading的共同指导下
由加州大学洛杉矶分校的小Jerome Engel博士领导的研究人员,Nariai博士将在
回顾队列定义以EZ(EHFO)表达的HFO代表病理性HFO。此外,HFO
在EC中表达的(EcHFOs)将被定义为代表生理性HFO。训练好的分类器将被分析
以获得eHFO和ecHFO的计算定义。同时展示了实时HFO
分析在前瞻性队列中是可行的,eHFO和ecHFO将被分析以证明HFO可以本地化
并将EZ与EC区分开来。Nariai博士已经展示了支持他的提议的可行性的初步结果
接近。完成拟议的目标将在将HFO用于临床方面取得重大进展
癫痫脑的有用空间生物标记物,用于指导癫痫手术,Nariai博士计划将其作为
R01项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hiroki Nariai其他文献
Hiroki Nariai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 24.21万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 24.21万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 24.21万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 24.21万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 24.21万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 24.21万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 24.21万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant














{{item.name}}会员




