Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
生物同步加速器 MicroCT 成像资源 (SMIRB) 的基础
基本信息
- 批准号:10558057
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAnatomyAnimal Disease ModelsAnimal ModelAnimalsBiologicalBiological ModelsBiological ProcessBiological SciencesBiologyBiopsy SpecimenCell Differentiation processCell physiologyCellsCellular MorphologyCellular StructuresCharacteristicsChildCladoceraCollaborationsCollectionCommunitiesComplementComputer ModelsComputer softwareComputing MethodologiesDaphniaDataData SetDetectionDevicesDiagnosisDiseaseEpithelial CellsFijiFoundationsGoalsHealthHistologicHistologyHumanImageImaging technologyIntestinesInvertebratesInvestigationKnowledgeLabelLaboratoriesLarvaLearningMachine LearningManualsMathematicsMetalsMethodologyMicroscopeMicroscopicModelingMorphologic artifactsMorphologyNormal CellNormalcyOrganismPathologic ProcessesPathologyPatternPhenotypePilot ProjectsProcessPublishingReference StandardsResearchResolutionResourcesRoentgen RaysS-nitro-N-acetylpenicillamineSamplingScanningSliceSpatial DistributionSpecificitySpecimenStainsStatistical DistributionsStructureSupervisionSynchrotronsTechniquesTechnologyTestingTissue SampleTissue imagingTissuesTrainingUpdateValidationVariantVisualizationWhole OrganismWorkX-Ray Computed TomographyXenopusZebrafishautomated segmentationbasecell typecomparativedisease diagnosisgastrointestinal epitheliumimaging systeminterestmachine learning algorithmmachine learning pipelinemicroCTmultidisciplinarynovelopen sourceopen source toolpreventscreeningsoft tissuesupervised learningthree-dimensional visualizationtomographytool
项目摘要
Summary/Abstract of the Proposed Project
Phenotypes provide a classical biological approach to studying morphological changes. Under a microscope,
adults and children alike can distinguish a normal cell arrangement like a single row of columnar-shaped gut cells,
and differentiate this normal presentation from an abnormal clustered group of the same columnar-shaped cells.
This distinction occurs by descriptively comparing the abnormal phenotype against normality. For a computer-
based model to make the same distinction, a wild-type reference must be used for comparison. Studies on cellular
phenotyping widely use histological examination to visualize cell morphological changes; however, it induces
sectioning artifacts, thereby preventing the visualization of 3-dimensional (3D) tissue volumes. To circumvent these
challenges, we plan to take advantage of an unbiased form of tissue imaging, termed X-ray computed
microtomography (microCT). MicroCT will be used to develop a standard reference of normal cellular phenotypes
needed to lay a foundation for automated segmentation and computational phenotyping. Unlike conventional
histology, the imaging technology of microCT, which amounts to a non-destructive form of histology for small metal-
stained biological samples, will enable 3D visualization of cell types in the micrometer range. The novel scale and
resolution of microCT will thereby reveal the 3D morphology and spatial distribution of cells to quantify and
characterize phenotypic variations across vertebrate and invertebrate models. Combining the resolution of
microCT imaging with machine learning, we will apply supervised-manual segmentation to microCT datasets to
create computational cell recognition mechanisms for morphological assessment. This integration will include
open-source tools and devices that will enable community-driven research and data-sharing. As an added benefit
of this AI integration, our computational approach will further assist in augmenting large amounts of data required
to examine the statistical association of cellular phenotypes.
To demonstrate the applicability of our methodology for phenotypic characterization in any given cell type or
organism, our pilot for this project will focus on the single-variable approach of ‘gut epithelial cells’ across three
organisms (i.e., zebrafish, daphnia, froglets). By prioritizing phenotypic investigation of these specialized cells to
the analogous relationship of mammalian intestinal cells, this work will establish a practical foundation to increase
our understanding of the 3D biological structure of wild-type cells, and advance morphological cellular phenotyping
in whole-organisms for quantitative, histological, disease recognition.
建议项目的摘要/摘要
表型为研究形态学变化提供了经典的生物学方法。在显微镜下,
成人和儿童都可以区分正常的细胞排列,如单行柱状肠细胞,
并将这种正常表现与异常的相同柱状细胞簇群区分开来。
这种区别是通过将异常表型与正常表型进行对比来实现的。对于电脑来说-
为了进行相同的区分,必须使用野生型引用进行比较。细胞研究
表型分型广泛使用组织学检查来可视化细胞形态学变化;然而,它诱导
切片伪影,从而阻止三维(3D)组织体积的可视化。为了规避这些
挑战,我们计划利用一种无偏见的组织成像形式,称为X射线计算
显微断层扫描(microCT)。MicroCT将用于开发正常细胞表型的标准参考
需要为自动分割和计算表型奠定基础。不同于常规
组织学,microCT的成像技术,相当于一种非破坏性的组织学形式,用于小金属,
染色的生物样品,将能够在微米范围内的细胞类型的3D可视化。新的规模和
因此,microCT的分辨率将揭示细胞的3D形态和空间分布,
表征脊椎动物和无脊椎动物模型中的表型变异。结合分辨率
通过机器学习的microCT成像,我们将对microCT数据集应用监督手动分割,
创建用于形态评估的计算细胞识别机制。这一整合将包括
开源工具和设备,将使社区驱动的研究和数据共享。作为一个额外的好处
在这种人工智能集成中,我们的计算方法将进一步帮助增加所需的大量数据
来检验细胞表型的统计学关联。
为了证明我们的方法在任何给定的细胞类型或
生物体,我们的试点项目将集中在单变量的方法'肠道上皮细胞'跨越三个
生物体(即,斑马鱼、水蚤、蛙类)。通过优先对这些特化细胞进行表型研究,
哺乳动物肠道细胞的类似关系,这项工作将建立一个实际的基础,以增加
我们对野生型细胞的3D生物学结构的理解,以及先进的形态学细胞表型
用于定量、组织学、疾病识别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Chi Cheng其他文献
Keith Chi Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Chi Cheng', 18)}}的其他基金
Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
生物同步加速器 MicroCT 成像资源 (SMIRB) 的基础
- 批准号:
10669824 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
同步加速器 MicroCT 生物学成像资源 (SMIRB) 的基础
- 批准号:
10601778 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
同步加速器 MicroCT 生物学成像资源 (SMIRB) 的基础
- 批准号:
10169023 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
同步加速器 MicroCT 生物学成像资源 (SMIRB) 的基础
- 批准号:
10406016 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
同步加速器 MicroCT 生物学成像资源 (SMIRB) 的基础
- 批准号:
10222804 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
同步加速器 MicroCT 生物学成像资源 (SMIRB) 的基础
- 批准号:
10456129 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB)
同步加速器 MicroCT 生物学成像资源 (SMIRB) 的基础
- 批准号:
9792960 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Creation of a New Penn State Zebrafish Functional Genomics Core
创建新的宾夕法尼亚州立大学斑马鱼功能基因组学核心
- 批准号:
8526075 - 财政年份:2013
- 资助金额:
$ 2.56万 - 项目类别:
Virtual microscopy of zebrafish as a community resource
斑马鱼的虚拟显微镜作为社区资源
- 批准号:
7993610 - 财政年份:2010
- 资助金额:
$ 2.56万 - 项目类别:
Genetic analysis of genomic instability and cancer in zebrafish
斑马鱼基因组不稳定性和癌症的遗传分析
- 批准号:
7845016 - 财政年份:2008
- 资助金额:
$ 2.56万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Research Grant