Deep-CDS: Deep Learning Semantic Data Lake for Clinical Decision Support
Deep-CDS:用于临床决策支持的深度学习语义数据湖
基本信息
- 批准号:10546333
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-10 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAddressAdmission activityAdverse eventAlgorithmsAntibioticsArtificial IntelligenceBackBusinessesCaregiversCaringCessation of lifeClinicalClinical Practice GuidelineComputer softwareCustomDataData SetDeteriorationDevelopmentDiagnosisDiagnosticEarly identificationEngineeringEnsureEvaluationFast Healthcare Interoperability ResourcesFeedbackFloorGrantGraphHealthHealth PersonnelHealth ProfessionalHealth StatusHospital MortalityHospitalsHourIncidenceInpatientsIntensive CareInterventionKnowledgeLaboratoriesLegal patentLength of StayLibrariesLifeMachine LearningMaintenanceMetadataMethodsModelingMonitorMorphologic artifactsNational Institute of General Medical SciencesNursesPatient CarePatient MonitoringPatient TransferPatient riskPatient-Focused OutcomesPatientsPhasePhysiciansPopulationProcessPrognosisPublishingQuality of CareReportingResource InformaticsRiskRisk FactorsSemanticsSepsisSeptic ShockSerious Adverse EventServicesSpecificitySurvival RateSymptomsSystemTaxonomyTechnologyTestingTherapeuticTimeTrainingUnited StatesUpdateVisualizationbaseclinical careclinical decision supportclinical predictorscloud baseddata harmonizationdata ingestiondata integrationdata lakedata modelingdeep learningdeep learning modeldiagnostic toolevidence basehealth dataimprovedimproved outcomeinpatient serviceknowledge graphknowledgebaselarge datasetslearning progressionmembermortalitymortality riskpatient populationpilot testpoint-of-care diagnosticspredictive modelingprototyperesponserisk stratificationsepticseptic patientstooltreatment responsetrendtrend analysisusabilityuser centered designventilation
项目摘要
More than 5 million patients are admitted annually to United States ICUs with average mortality rate reported
ranging from 8-19%, or about 500,000 deaths annually. Sepsis is the leading cause of in-hospital mortality,
where one in three inpatient deaths are due to sepsis. Incidence of sepsis has been increasing with 1.7 million
sepsis cases and 270,000 deaths per year. Early identification of deterioration has been shown to reduce the
need for patient transfer to higher care units, reduce lengths of stay, and improve survival rates. Each hour of
delay in ICU admission has been associated with a 1.5% increased risk of ICU death and a 1% increase in risk
of hospital death. Many studies support that there is an increase in mortality rate for every hour delay in
antibiotics. Pairing patient risk stratification with appropriate levels of hospital intervention is essential to reduce
risk of mortality. Patients in intermediate units between the levels of monitoring found in floor units and ICUs are
especially difficult to predict possibility of condition deterioration. Automated monitoring, alerts, and trend
analysis are essential to identifying and proactively intervening patients under duress. Current methods of
monitoring patient health have low specificity and have significant room for improvement.
This project will develop Deep-CDS, a cloud-based deep learning system for context-sensitive clinical
decision support in monitoring and predicting the deterioration of patient health and progression of sepsis risk
factors in real-time to improve outcomes and optimize the management of care across the hospital population.
To support the clinical care team, Deep-CDS provides team members with (a) a clinical care knowledgebase,
(b) an early warning score for deteriorating health conditions, (c) a model for predicting septic conditions, (d)
evidence-based clinical practice guidelines, and (e) visualization of patient health status trends. Deep-CDS
addresses NIGMS Priorities for Small Business Development of Sepsis Diagnostics and Therapeutics, NOT-GM-20-
028: 1) Diagnostic tools for emergency department settings; 2) Predictive clinical algorithms and point-of-care
diagnostics; 3) Technologies that combine various types of data for diagnosis of sepsis patients; and 4) Clinical
decision support, including use of artificial intelligence and machine learning approaches, to develop tools for early
recognition of sepsis, assessment of treatment responses and patient deterioration, and long-term prognosis
prediction in various care settings.
每年有超过500万患者被送入美国icu,平均死亡率报告
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mansur R. Kabuka其他文献
Mansur R. Kabuka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mansur R. Kabuka', 18)}}的其他基金
Deep-CDS: Deep Learning Semantic Data Lake for Clinical Decision Support
Deep-CDS:用于临床决策支持的深度学习语义数据湖
- 批准号:
10747223 - 财政年份:2022
- 资助金额:
$ 25.35万 - 项目类别:
Ontology-Based Knowledge and Belief Management System
基于本体的知识和信念管理系统
- 批准号:
8588745 - 财政年份:2013
- 资助金额:
$ 25.35万 - 项目类别:
Ontology-Based Knowledge and Belief Management System
基于本体的知识和信念管理系统
- 批准号:
8741969 - 财政年份:2013
- 资助金额:
$ 25.35万 - 项目类别:
Ontology-Based Knowledge and Belief Management System
基于本体的知识和信念管理系统
- 批准号:
8251855 - 财政年份:2012
- 资助金额:
$ 25.35万 - 项目类别:
Automated Development of Electronic Data Capture for Clinical Trials
临床试验电子数据采集的自动化开发
- 批准号:
7538047 - 财政年份:2008
- 资助金额:
$ 25.35万 - 项目类别:
Automated Development of Electronic Data Capture for Clinical Trials
临床试验电子数据采集的自动化开发
- 批准号:
7626976 - 财政年份:2008
- 资助金额:
$ 25.35万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Operating Grants