Multiomic genomic mapping with long read sequencing
使用长读长测序进行多组基因组作图
基本信息
- 批准号:10546355
- 负责人:
- 金额:$ 40.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AntibodiesAutomationBenchmarkingBiological AssayBiomedical ResearchBlood specimenCell Differentiation processCell LineCellsCellular AssayCentromereChIP-seqChimeric ProteinsChromatinDNADNA MethylationDNA Modification MethylasesDNA sequencingDataData SetDevelopmentElementsEnzymesEpigenetic ProcessGTP-Binding Protein alpha Subunits, GsGene Expression RegulationGenerationsGenetic TranscriptionGenomeGenomic SegmentGenomic approachGenomicsHeterogeneityHistonesLabelMapsMeasuresMethylationPathway interactionsPhasePopulationPost-Translational Protein ProcessingProductionProtein MethylationProteinsProtocols documentationRepetitive SequenceResolutionSamplingSignal TransductionStretchingUniversitiesValidationWorkbasebiomarker discoverybisulfite sequencingcancer cellcell typeclinical applicationclinically relevantdata analysis pipelinedrug developmentepigenomicshuman diseaseinnovationinterestmultiple omicsnovelparalogous geneperipheral bloodpreservationresearch and developmentresponsesequencing platformsingle moleculetargeted sequencingtelomere
项目摘要
PROJECT SUMMARY
Genomic mapping of histone post-translational modifications (PTMs), chromatin-associated proteins
(CAPs), and DNA methylation (DNAme) is a powerful approach for biomedical research and drug development.
Current genomics assays (e.g. ChIP-seq, CUT&RUN) rely on second generation short-read sequencing (SRS),
wherein short reads (<500bp) limit the ability to a) analyze concordance of epigenomic features on a single DNA
molecule and b) map to repetitive regions of the genome. Third generation long-read sequencing (LRS) platforms
are capable of sequencing long reads (>10kb, even >100kb) from a single molecule, and are poised to
revolutionize genomics by overcoming the significant limitations of SRS. By preserving long stretches of DNA,
LRS allows relationships between features on a single molecule to be used to resolve heterogeneity within mixed
populations. This is highly relevant for clinical applications, as it enables analysis of signatures of specific cells
within a sample without the need for single cell assays (which generate very sparse data). Further, sequencing
of long reads allows mapping to challenging and repetitive regions of the genome, which were previously
“unmappable” with SRS. Development of epigenetic mapping assays that use LRS provides an unprecedented
opportunity to decipher the chromatin landscape of cells within mixed populations, including within previously
unmappable genomic regions. However, assays to measure epigenetic elements using LRS are lacking.
Here, EpiCypher is collaborating with LRS expert Dr. Winston Timp at Johns Hopkins University to
develop CUTANA-LRS, a first-in-class multiomics assay platform that leverages LRS to simultaneously profile
histone PTMs or CAPs and DNAme in a single assay. The innovation of CUTANA-LRS is the development of a
proprietary, nondestructive approach for epigenomic mapping that leverages a novel DNA methyltransferase
fusion protein to label chromatin features of interest. This approach was inspired by related immunotethering-
based approaches for genomic mapping that EpiCypher is developing and commercializing (e.g. CUT&RUN).
In CUTANA-LRS, DNA molecules are labeled and preserved intact for LRS, which will allow resolution of
heterogeneity within / between data types, and will provide access to previously unmappable genomic regions.
Together, these advances will provide a pathway to better understand mechanisms of gene regulation and
transcriptional response, including in the context of human disease. In Aim 1, we will optimize CUTANA-LRS
and map multiple targets, including within challenging regions, while also profiling native DNAme. In Aim 2, we
will rigorously develop CUTANA-LRS by optimizing robust protocols across diverse targets, inputs, sequencing
platforms, and incorporate a targeted enrichment approach. In Aim 3, we will prepare for commercial launch of
CUTANA-LRS, develop automated protocols, perform external validation, and demonstrate a clinical application.
This work will establish CUTANA-LRS as a revolutionary platform for mapping and deciphering the relationships
between multiple types of chromatin features with access to previously “unmappable” regions.
项目摘要
组蛋白翻译后修饰(PTM)、染色质相关蛋白的基因组图谱
DNA甲基化(DNAme)是生物医学研究和药物开发的有力方法。
目前的基因组学测定(例如ChIP-seq、CUT&RUN)依赖于第二代短读测序(SRS),
其中短读段(<500 bp)限制了以下能力:a)分析单个DNA上的表观基因组特征的一致性,
分子和B)映射到基因组的重复区域。第三代长读测序(LRS)平台
能够对来自单个分子的长读段(> 10 kb,甚至> 100 kb)进行测序,并且准备
通过克服SRS的重大局限性来彻底改变基因组学。通过保存DNA的长片段,
LRS允许使用单个分子上的特征之间的关系来解析混合细胞内的异质性。
人口。这与临床应用高度相关,因为它能够分析特定细胞的特征
而不需要单细胞测定(其产生非常稀疏的数据)。此外,测序
长读段允许映射到基因组的具有挑战性和重复性的区域,这些区域以前是
SRS的“不可映射”。使用LRS的表观遗传作图测定的发展提供了前所未有的
有机会破译混合群体中细胞的染色质景观,包括以前的
无法定位的基因组区域然而,缺乏使用LRS测量表观遗传元件的测定。
在这里,EpiCypher正在与约翰霍普金斯大学的LRS专家Winston Timp博士合作,
开发CUTANA-LRS,这是一流的多组学检测平台,利用LRS同时分析
组蛋白PTM或CAP和DNAme。CUTANA-LRS的创新是一种
利用新型DNA甲基转移酶进行表观基因组作图的专有非破坏性方法
融合蛋白来标记感兴趣的染色质特征。这种方法的灵感来自于相关的免疫拴系-
EpiCypher正在开发和商业化的基于基因组作图的方法(例如CUT&RUN)。
在CUTANA-LRS中,DNA分子被标记并完整保存用于LRS,这将允许解析
数据类型内/之间的异质性,并将提供对以前无法映射的基因组区域的访问。
总之,这些进展将为更好地理解基因调控机制提供一条途径,
转录反应,包括在人类疾病的背景下。在目标1中,我们将优化CUTANA-LRS
和映射多个目标,包括在挑战性区域内,同时也分析天然DNAme。在目标2中,
将通过优化不同靶点、输入、测序的稳健方案,严格开发CUTANA-LRS
平台,并纳入有针对性的富集方法。在目标3中,我们将为商业推出
CUTANA-LRS,开发自动化方案,执行外部确认,并演示临床应用。
这项工作将建立CUTANA-LRS作为一个革命性的平台,映射和破译的关系
在多种类型的染色质特征之间,可以访问以前“不可映射”的区域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN MICHAEL BURG其他文献
JONATHAN MICHAEL BURG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN MICHAEL BURG', 18)}}的其他基金
Multiomic genomic mapping with long read sequencing
使用长读长测序进行多组基因组作图
- 批准号:
10685064 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
A molecular toolbox to accelerate drug development for histone lysine methylation regulators
加速组蛋白赖氨酸甲基化调节剂药物开发的分子工具箱
- 批准号:
10481092 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
A molecular toolbox to accelerate drug development for histone lysine methylation regulators
加速组蛋白赖氨酸甲基化调节剂药物开发的分子工具箱
- 批准号:
10615911 - 财政年份:2022
- 资助金额:
$ 40.64万 - 项目类别:
Quantitative mapping of combinatorial histone modifications
组合组蛋白修饰的定量作图
- 批准号:
10324501 - 财政年份:2019
- 资助金额:
$ 40.64万 - 项目类别:
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
EU-Funded
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Cooperative Agreement
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Research Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Continuing Grant