Hox Gene Regulation of Skeletal Repair
Hox 基因对骨骼修复的调控
基本信息
- 批准号:10550118
- 负责人:
- 金额:$ 3.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdipocytesAdultAllelesAnimalsAnteriorBehaviorBiologicalBiological AssayBone MarrowBone MatrixBone callusBone remodelingCartilageCell Culture TechniquesCell Differentiation processCell LineageCellsChondrocytesChondrogenesisCollagenCollectionControl AnimalDataDefectDevelopmentDevelopmental ProcessEmbryonic DevelopmentEventExhibitsFractureGene ExpressionGene Expression RegulationGenesGeneticGenetic RecombinationGoalsGrowthHistocytochemistryHistologyHomeobox GenesHomeostasisInjuryKnowledgeLabelLaboratoriesLifeMaintenanceMeasuresMediatingMesenchymalMesenchymal Stem CellsModelingMolecularMusNatural regenerationOrganOsteoblastsOsteocytesOsteogenesisPathway interactionsPatternPlayPopulationProcessRadialReporterReportingRoentgen RaysRoleSkeletonSmall Interfering RNAStromal CellsTestingTimeTomatoesWorkbasebonebone cellbone fracture repaircartilage cellconditional mutantdifferential expressionfibulagene functionhealinginjury and repairinsightloss of functionmicroCTmouse modelmutantosteogenicparalogous genepostnatalprogenitorrepairedresponseresponse to injuryself-renewalsingle cell analysissingle cell sequencingskeletalskeletal stem cellstemstem cell populationstem cellstibiatooltranscription factortranscriptome sequencingtranscriptomicsulna
项目摘要
PROJECT SUMMARY/ABSTRACT
Hox genes are a group of evolutionarily conserved transcription factors important for several developmental
processes, including patterning of the anterior-posterior axis of the skeleton. The Hox11 paralogous gene
group, which is expressed in the zeugopod region (radius/ulna and fibula/tibia), are necessary for proper
patterning of the zeugopod. In the past few years, work from the Wellik laboratory has shown that these
developmentally important Hox transcription factors remain expressed in the skeleton throughout life,
specifically in progenitor-enriched mesenchymal stem cells (MSCs). Rigorous genetic lineage labeling from the
lab demonstrated that these cells give rise to all three mesenchymal lineages, osteoblasts, chondrocytes and
adipocytes, and exhibit life-long self-renewal, providing strong evidence that this population of cells are skeletal
stem cells. A key question based on this information is whether Hox gene function is important in these stem
cells throughout life. We recently reported that temporal deletion of Hox11 at adult stages results in defects in
osteoblastogenesis, wherein differentiation is initiated, but osteoblasts and osteocytes fail to mature. Adult
conditional loss of Hox11 function results in a progressively weakened bone matrix where collagen does not
properly assemble in remodeling bone. In this study, I will use a temporally-controlled, conditional loss-of-
function model to assess defects in response to fracture repair (Aim 1). Preliminary data shows that
temporally-deleted, ROSACreERT2/+;Hoxa11eGFP/-;Hoxd11LoxP/LoxP mice are unable to repair after fracture.
Additionally, preliminary data suggest that the populations of osteoblasts and chondrocytes appear to be in
abnormal in mutants. Using Hoxa11CreERT2 to enact both deletion and lineage labeling, I can mark the cells that
have undergone recombination for isolation and transcriptomic analyses (Hoxa11eGFP/CreERT2;Hoxd11LoxP/LoxP;
ROSAtd-Tomato/+, Aim 2). Fracture injury induces an acute response in which stem/progenitor expansion and
differentiation to both skeletal lineages is occurring simultaneously, providing an excellent model to isolate
single cells and identify the pathways and targets Hox genes regulate in these processes. Preliminary data
shows that a large proportion of GFP+ cells are available for collection from the fracture callus, making single
cell sequencing not only possible, but a highly effective tool to investigate transcriptomic change in Hox-
expressing and Hox-lineage cells. The overall goal of this project is to define Hox genetic function in fracture
repair and to identify the molecular mechanisms by which Hox genes regulate skeletal behavior in this process.
项目总结/摘要
Hox基因是一组进化上保守的转录因子,对几种发育过程起重要作用。
过程,包括骨骼前后轴的图案。Hox 11同源基因
组,这是在zeugopod地区(桡骨/尺骨和腓骨/胫骨)表达,是必要的适当
这是一种共足类动物的模式。在过去的几年里,Wellik实验室的工作表明,
发育重要的Hox转录因子在整个生命过程中在骨骼中保持表达,
特别是在祖细胞富集的间充质干细胞(MSC)中。严格的遗传谱系标记,
实验室证明,这些细胞产生所有三种间充质谱系,成骨细胞,软骨细胞和
脂肪细胞,并表现出终身自我更新,提供了强有力的证据表明,这一群体的细胞是骨骼
干细胞基于这些信息的一个关键问题是Hox基因功能在这些茎中是否重要
细胞一生我们最近报道了Hox 11在成体阶段的暂时缺失导致了在胚胎发育中的缺陷。
成骨细胞发生,其中分化开始,但成骨细胞和骨细胞不能成熟。成人
Hox 11功能的条件性丧失导致骨基质逐渐变弱,而胶原蛋白不
在重塑骨中正确组装。在这项研究中,我将使用一个时间控制的,有条件的损失-
功能模型,以评估响应骨折修复的缺陷(目标1)。初步数据显示,
暂时缺失的ROSACreERT 2/+; Hoxa 11 eGFP/-; Hoxd 11 LoxP/LoxP小鼠在骨折后不能修复。
此外,初步数据表明,成骨细胞和软骨细胞的群体似乎是在
变种人的异常使用Hoxa 11 CreERT 2来制定缺失和谱系标记,我可以标记细胞,
进行了重组分离和转录组学分析(Hoxa 11 eGFP/CreERT 2; Hoxd 11 LoxP/LoxP;
ROSAtd-Tomato/+,Aim 2)。骨折损伤诱导急性反应,其中干/祖细胞扩张和
同时向两种骨骼谱系分化,提供了一个很好的模型来分离
单细胞,并确定Hox基因在这些过程中调节的途径和靶点。初步数据
显示大比例的GFP+细胞可用于从骨折愈伤组织收集,
细胞测序不仅是可能的,而且是研究Hox转录组变化的高效工具,
表达和Hox谱系细胞。该项目的总体目标是确定Hox在骨折中的遗传功能
修复,并确定Hox基因在此过程中调节骨骼行为的分子机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katharine A. Hubert其他文献
Katharine A. Hubert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katharine A. Hubert', 18)}}的其他基金
相似国自然基金
支链氨基酸代谢紊乱调控“Adipocytes - Macrophages Crosstalk”诱发2型糖尿病脂肪组织功能和结构障碍的作用及机制
- 批准号:81970721
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
New development of cellular regeneration therapy in jaw bone using stem cells derived from adipocytes jaw bone
利用颌骨脂肪细胞来源的干细胞进行颌骨细胞再生治疗的新进展
- 批准号:
23K16058 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel mechanism of insulin resistance mediated by uric acid metabolism in adipocytes
脂肪细胞尿酸代谢介导胰岛素抵抗的新机制
- 批准号:
23K10969 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Development of adipocytes for gene therapy that avoids cellular stress due to overexpression of therapeutic proteins
开发用于基因治疗的脂肪细胞,避免因治疗蛋白过度表达而造成的细胞应激
- 批准号:
23H03065 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of bitter taste receptors in adipocytes and hepatocytes
脂肪细胞和肝细胞中苦味受体的功能分析
- 批准号:
23K05107 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of mechanisms for conversion of adipocytes to cancer-associated fibroblasts in osteosarcoma microenvironment
阐明骨肉瘤微环境中脂肪细胞转化为癌症相关成纤维细胞的机制
- 批准号:
23K19518 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on UCP-1 independent metabolic regulation by brown adipocytes
棕色脂肪细胞对UCP-1独立代谢调节的研究
- 批准号:
23K18303 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing breast cancer invasion and proliferation when co-aggregated with adipocytes in multicellular spheroids created with a custom bioreactor to augment cell-cell connectivity.
当与多细胞球体中的脂肪细胞共聚集时,表征乳腺癌的侵袭和增殖,该多细胞球体是用定制生物反应器创建的,以增强细胞间的连接。
- 批准号:
10334113 - 财政年份:2022
- 资助金额:
$ 3.49万 - 项目类别: