Reading workstation for clinical contrast echocardiography

临床造影超声心动图读取工作站

基本信息

  • 批准号:
    10547365
  • 负责人:
  • 金额:
    $ 102.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Coronary microvascular dysfunction (MVD) is increasingly being appreciated as a part of the pathophysiology of a number of conditions including MINOCA (myocardial infarction with nonobstructive coronary arteries), heart transplant graft vasculopathy, and heart failure with preserved ejection fraction (HFpEF). Coronary MVD occurs more commonly in women and can result in chest pain due to myocardial ischemia despite the presence of normal or near normal coronary angiograms. Identifying MVD in patients remains challenging and results in delayed or missed diagnoses even though cardiovascular event rates in these conditions are similar to those with established coronary artery disease. Clinical tools are therefore needed to both rapidly and accurately detect these conditions. Echocardiographic imaging of the myocardial microcirculation using ultrasound contrast agents, referred to as myocardial contrast echocardiography (MCE), has decades of data demonstrating the diagnostic and prognostic benefit of MCE in evaluating patients with MVD. In many ways, MCE is the preferred method for perfusion assessment because it is more convenient, less expensive, and more available than comparative techniques of nuclear imaging (SPECT), positron emission tomography (PET), and cardiac MRI. However, the clinical use of MCE has been limited to only a handful of experts in the field due in large part to the perceived experience dependence of MCE interpretation. Currently, no widely available clinical tools exist to support MCE quantitative analysis and interpretation. A clinical gap exists between a proven echocardiographic technique and the technology necessary to apply MCE in an efficient, user friendly and standardized method. Narnar LLC is developing a user-friendly contrast echocardiography quantification and visualization software. This product is designed to overcome the existing critical limitations of MCE by enabling rapid interpretation. This new clinical tool will evaluate the myocardial flow-function relationship that is critical to identifying patients with MVD by using echocardiography. The overall aim of this phase II proposal is to productionize the prototype software into a comprehensive software solution that when integrated into the current workflows using already available technologies (ultrasound, FDA approved enhancing agents) will enable a cardiologist to confidently assess both function and perfusion by contrast echocardiography.
项目摘要 冠状动脉微血管功能障碍(MVD)作为冠状动脉粥样硬化的病理生理学的一部分越来越受到重视。 许多疾病,包括MINOCA(非阻塞性冠状动脉心肌梗死),心脏 移植物血管病变和射血分数保留的心力衰竭(HFpEF)。冠状动脉MVD发生 更常见于女性,尽管存在心肌缺血, 冠状动脉造影正常或接近正常。确定患者中的MVD仍然具有挑战性, 延迟或漏诊,即使这些情况下的心血管事件发生率与那些 患有冠状动脉疾病因此,需要临床工具来快速准确地检测 了以下条件超声造影对心肌微循环的显像研究 被称为心肌造影超声心动图(MCE)的药物,有数十年的数据表明, MCE在评估MVD患者中的诊断和预后益处。在许多方面,MCE是首选 灌注评估的方法,因为它更方便,更便宜,更可用, 核成像(SPECT)、正电子发射断层扫描(PET)和心脏MRI的比较技术。 然而,MCE的临床使用仅限于该领域的少数专家,这在很大程度上是由于 MCE解释的感知经验依赖。目前,还没有广泛可用的临床工具来 支持MCE定量分析和解释。在经证实的超声心动图检查与 技术和必要的技术,以有效、用户友好和标准化的方法应用MCE。 Narnar LLC正在开发一种用户友好的对比超声心动图定量和可视化软件。 该产品旨在通过快速判读来克服MCE现有的关键限制。 这种新的临床工具将评估心肌血流-功能关系,这对识别患者至关重要 用超声心动图检测MVD第二阶段提案的总体目标是将原型产品化 将软件集成到一个全面的软件解决方案中, 现有的技术(超声,FDA批准的增强剂)将使心脏病专家能够自信地 通过对比超声心动图评估功能和灌注。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiri Sklenar其他文献

Jiri Sklenar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
    Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
    Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 102.35万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 102.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了