Dynamic prediction of type 1 diabetes risk and autoantibody status by a joint model of longitudinal and multistate models
通过纵向和多状态模型的联合模型动态预测1型糖尿病风险和自身抗体状态
基本信息
- 批准号:10630731
- 负责人:
- 金额:$ 14.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAutoantibodiesBirthCharacteristicsChildClinicalCohort StudiesComplexComplications of Diabetes MellitusCost of IllnessDataData SetDevelopmentDiabetes MellitusDiabetes autoantibodiesDiagnosisDiagnosticDiseaseDisease ProgressionEarly identificationEventFutureGenetic Predisposition to DiseaseGenetic RiskGoalsHigh Performance ComputingImmunologicsIndividualInfrastructureInjectionsInsulinInsulin deficiencyInsulin-Dependent Diabetes MellitusJointsMeasurementMeasuresMetabolicMethodologyMethodsModelingMonitorNatural HistoryPatientsPatternPerformancePhysiciansProbabilityROC CurveRecording of previous eventsResearchRiskRisk FactorsSpecificityStatistical MethodsStatistical ModelsStructureStructure of beta Cell of isletTechnologyTimeUpdatechronic autoimmune diseasecomplex datadiabetes riskdisorder riskflexibilityhazardhealth managementhigh riskimprovedinsulin dependent diabetes mellitus onsetislet cell antibodynovel diagnosticspersonalized predictionsprediction algorithmpredictive modelingpreventrisk stratificationsemiparametrictime use
项目摘要
Project Summary/Abstract
Type 1 diabetes is a chronic autoimmune disease that features the destruction of pancreatic beta-cells
resulting in insulin deficiency and daily insulin injections for survival. Early identification of type 1 diabetes can
be achieved by continuously monitoring islet autoantibody status and longitudinal markers that measure the
immunological and metabolic functions. The goal of this proposal is to develop a statistical model that can
give dynamic predictions about type 1 diabetes risk based on autoantibody status and the historical data of an
individual. A longitudinal model for characterizing time-varying risk factors, a multistate model for predicting
autoantibody status, and a survival model for predicting disease progression will be combined in a joint model
to achieve the goal. The model will be applied to a dataset derived from The Environmental Determinants of
Diabetes in the Young (TEDDY) study. It may be challenging to develop a model with such a complex structure.
However, the advances in statistical methodology and computational technology have opened up opportunities
to resolve the problems. In Aim 1, we will formulate the proposed joint model and apply it to the TEDDY data.
Statistical inferences can be made to investigate how the changes in diabetes-related antoantibodies and other
longitudinal risk factors are associated with the risk for type 1 diabetes diagnosis. In Aim 2, based on the
proposed joint model, a dynamic prediction algorithm will be derived that predicts autoantibody development
and the subsequent risk of type 1 diabetes given the historical data of an individual. Lastly, in Aim 3, we will
evaluate the accuracy of the proposed dynamic prediction algorithm using a variety of diagnostic measures.
We expect that the proposed joint model will demonstrate better performance than the conventional static
survival models that use baseline characteristics or last available measurements. The proposed research can
answer critical research questions about the natural history of type 1 diabetes and the relationship between
longitudinal risk factors.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu You其他文献
Lu You的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Defining the cellular origin of pathogenic autoantibodies
定义致病性自身抗体的细胞起源
- 批准号:
EP/Y031091/1 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Fellowship
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
- 批准号:
MR/Y022947/1 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Research Grant
Autoantibodies and antibody-secreting cells in neurological autoimmune diseases: from biology to therapy
神经性自身免疫性疾病中的自身抗体和抗体分泌细胞:从生物学到治疗
- 批准号:
479128 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Operating Grants
Autoantibodies to tumor-derived neoepitopes as biomarkers and immunoPET agents for the early detection of small cell lung cancer
肿瘤衍生新表位的自身抗体作为生物标志物和免疫 PET 试剂用于小细胞肺癌的早期检测
- 批准号:
10715807 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Role of pharmacological activity of autoantibodies in ME/CFS
自身抗体药理活性在 ME/CFS 中的作用
- 批准号:
MR/Y003667/1 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Research Grant
Pathological Mechanisms of Immune-Mediated Cerebellar Ataxia with Associated Sez6L2 Autoantibodies
免疫介导的小脑共济失调与相关 Sez6L2 自身抗体的病理机制
- 批准号:
10740682 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Pathogenesis of idiopathic nephrotic syndrome: defining the role of B cells and autoantibodies reactive to podocyte proteins
特发性肾病综合征的发病机制:定义 B 细胞和足细胞蛋白反应性自身抗体的作用
- 批准号:
487849 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Operating Grants
Depleting autoantibodies for the treatment of autoimmunity
消耗自身抗体来治疗自身免疫
- 批准号:
10481071 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Pathological Mechanisms of Immune-Mediated Cerebellar Ataxia with Associated Sez6L2 Autoantibodies
免疫介导的小脑共济失调与相关 Sez6L2 自身抗体的病理机制
- 批准号:
10526475 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:














{{item.name}}会员




