Center on Probes for Molecular Mechanotechnology
分子机械技术探针中心
基本信息
- 批准号:10629919
- 负责人:
- 金额:$ 146.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Abnormal CellAccelerationAdaptive Immune SystemAddressAdoptionAffectAppleArchitectureAutomobile DrivingBindingBiomedical TechnologyBlood PlateletsBlood TransfusionCardiopulmonary BypassCell Surface ReceptorsCell physiologyCellsCellular biologyClinical ResearchCoagulation ProcessCollaborationsCommunitiesCustomDNADNA ProbesDNA StructureDNA amplificationData AnalysesDiagnosisDiseaseDissociationEducational workshopEmbryoEnsureEnzyme-Linked Immunosorbent AssayEventExtramural ActivitiesFeesFlow CytometryFluorescence PolarizationFocal AdhesionsFrequenciesFunctional disorderGeographyGoalsGrowthHeterogeneityImageImmune responseIndustryInternetInvadedKnowledgeLifeMainstreamingMalignant neoplasm of lungMapsMeasuresMechanicsMediatingMethodsMicroscopeMolecularMolecular ProbesNational Institute of General Medical SciencesNeoplasm MetastasisNormal CellPathway interactionsPatientsPeer ReviewPreparationProcessProteinsProteomicsProtocols documentationPublicationsPublishingReaderReagentResearch PersonnelResolutionRoleSeminalSeriesServicesSignal TransductionStrokeStructureSurfaceSystemT-Cell Immunologic SpecificityT-Cell ReceptorT-LymphocyteTechniquesTechnologyTestingTimeTractionTrainingWeightWorkadhesion receptorcancer cellcell growthcommercializationcommunity engagementdesignforce sensorhigh throughput analysisimprovedinterestmechanical forcemechanical signalmechanotransductionnanoscalenew technologyprototypepublic health relevancereceptorrecruitresponsesymposiumtechnology developmenttoolvirtual
项目摘要
Project summary
The proposed Center on Probes for Molecular Mechanotechnology (CPMM) will work to develop and optimize
technologies to enable the study of mechanobiology and mechanotransduction pathways in living cells. The
CPMM includes three highly synergistic Technology Development Projects (TDPs) that will be led by Alexa
Mattheyses, Khalid Salaita, and Yonggang Ke who have a strong track record of jointly publishing and working
together to developed tension probe technologies. In TDP#1: High resolution probes for mechanobiology, we
will create “indestructible” probes that can push the limits of spatial and orientation resolution for the DNA tension
probe technology. Tension-PAINT imaging will be refined to achieve realtime 20 nm spatial mapping of forces
and to combine this with immunostaining to map the proteins that assemble within proximity to mechanically
active receptors. Force orientation will be mapped using fluorescence polarization methods with turn-key
commercial microscopes. In TDP#2: Probes for mechanical tagging, we will develop methods of force-induced
tagging. The central design feature is a DNA probe that mediates a binding event or dissociation event at
threshold levels of force. Cells are tagged based on the magnitude and frequency of mechanical events
generated by a cell surface receptors. This TDP will lead to high-throughput analysis of cells using flow cytometry
and will also allow for proteomic analysis to open the door to “mechanomics”. Under TDP#3: Amplified force
sensors, the central technology here is responsive DNA structures that amplify mechanical inputs. The CPMM
has nine associated inaugural Driving Biomedical Projects (DBPs) led by a team of geographically diverse
collaborators. DBPs #1-#4 are focused on mechanobiology of T cells and use CPMM tools to test the
mechanosensor function of the T cell receptor (TCR) and the adhesion receptor LFA-1. DBP#5 focuses on the
heterogeneity in cancer cells. DBP#6 and #7 target the mechanosensor responses of platelets. Finally, DBP#8
and #9 address fundamental questions of the role of mechanics in focal adhesions. Our prototype TDP
technologies provide methods to measure molecular forces with the same ease and simplicity as that of
immunostaining, flow cytometry, PCR and ELISA. But unlike these mainstream techniques, mechano-imaging,
mechano-PCR, mechano-flow, and mechano-ELISA are not commercialized. Hence, the reagents and surface
preparation protocols and data analysis routines have to be custom prepared by the end user. This can be
challenging to the non-expert and is not routine. Therefore, the CPMM will integrate a strong Community
Engagement (CE) component. CE activities will focus on hands-on training workshops, publication of methods
articles, virtual seminar series, industry engagement, a strong web presence and engagement with three key
mechanobiology conferences that will help accelerate adoption of the tension probe technology. These CE
activities will ultimately lead to commercialization which will enable wide spread dissemination across the various
cell biology communities.
项目总结
拟建的分子力学技术探针中心(CPMM)将致力于发展和优化
能够研究活细胞中的机械生物学和机械转导途径的技术。这个
CPMM包括三个高度协同的技术开发项目(TDP),这些项目将由Alexa领导
马修斯、哈立德·萨莱塔和柯永刚,他们有很强的联合出版和工作记录
共同开发了张力探头技术。在TDP#1:机械生物学的高分辨率探测器中,我们
将创造“坚不可摧”的探测器,可以突破dna张力的空间和方位分辨率的极限。
探头技术。张力-油漆成像将得到改进,以实现力的实时20 nm空间映射
并将其与免疫染色相结合,以绘制机械地在邻近区域组装的蛋白质图
活跃的受体。将使用带有交钥匙的荧光偏振法绘制部队方向图
商用显微镜。在TDP#2:用于机械标记的探针中,我们将发展力诱导的方法
标记。中心设计特征是一个DNA探针,它在
武力的门槛水平。单元格根据机械事件的大小和频率进行标记
由细胞表面受体产生。这种TDP将导致使用流式细胞术对细胞进行高通量分析
并将允许蛋白质组分析打开“机制组学”的大门。在TDP#3下:扩大力量
传感器,这里的核心技术是响应性DNA结构,它放大机械输入。CPMM
有九个相关的启动生物医学项目(DBP),由一个地理位置不同的团队领导
合作者。DBP#1-#4专注于T细胞的机械生物学,并使用CPMM工具测试
T细胞受体(TCR)和黏附受体LFA-1的机械传感器功能。DBP#5重点关注
癌细胞的异质性。DBP#6和#7针对的是血小板的机械传感器反应。最后,DBP#8
和#9解决了力学在局部粘连中所起作用的基本问题。我们的TDP原型
技术提供了测量分子力的方法,其简单易行
免疫组织化学染色、流式细胞术、聚合酶链式反应和酶联免疫吸附试验。但与这些主流技术不同,机械成像,
机械式聚合酶链式反应、机械式流动免疫吸附试验和机械式酶联免疫吸附试验均未商业化。因此,试剂和表面
准备方案和数据分析例程必须由最终用户定制准备。这可以是
挑战非专家,这不是例行公事。因此,CPMM将整合一个强大的社区
接洽(CE)组件。CE的活动将侧重于动手培训讲习班、出版方法
文章、虚拟研讨会系列、行业参与度、强大的网络表现和参与度
机械生物学会议将有助于加快张力探头技术的采用。这些行政长官
活动最终将导致商业化,这将使各种不同的
细胞生物学群落。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khalid S Salaita其他文献
Khalid S Salaita的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khalid S Salaita', 18)}}的其他基金
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles (RADx-rad / SEED Administrative Supplement)
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台(RADx-rad / SEED 行政补充文件)
- 批准号:
10648924 - 财政年份:2022
- 资助金额:
$ 146.8万 - 项目类别:
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台
- 批准号:
10321002 - 财政年份:2020
- 资助金额:
$ 146.8万 - 项目类别:
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台
- 批准号:
10264612 - 财政年份:2020
- 资助金额:
$ 146.8万 - 项目类别:
Developing a Bioanalytical Toolkit to Study the Mechanobiology of Juxtacrine Signaling
开发生物分析工具包来研究近分泌信号传导的力学生物学
- 批准号:
9894683 - 财政年份:2017
- 资助金额:
$ 146.8万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 146.8万 - 项目类别:
Standard Grant














{{item.name}}会员




