Center on Probes for Molecular Mechanotechnology
分子机械技术探针中心
基本信息
- 批准号:10629919
- 负责人:
- 金额:$ 146.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-10 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Abnormal CellAccelerationAdaptive Immune SystemAddressAdoptionAffectAppleArchitectureAutomobile DrivingBindingBiomedical TechnologyBlood PlateletsBlood TransfusionCardiopulmonary BypassCell Surface ReceptorsCell physiologyCellsCellular biologyClinical ResearchCoagulation ProcessCollaborationsCommunitiesCustomDNADNA ProbesDNA StructureDNA amplificationData AnalysesDiagnosisDiseaseDissociationEducational workshopEmbryoEnsureEnzyme-Linked Immunosorbent AssayEventExtramural ActivitiesFeesFlow CytometryFluorescence PolarizationFocal AdhesionsFrequenciesFunctional disorderGeographyGoalsGrowthHeterogeneityImageImmune responseIndustryInternetInvadedKnowledgeLifeMainstreamingMalignant neoplasm of lungMapsMeasuresMechanicsMediatingMethodsMicroscopeMolecularMolecular ProbesNational Institute of General Medical SciencesNeoplasm MetastasisNormal CellPathway interactionsPatientsPeer ReviewPreparationProcessProteinsProteomicsProtocols documentationPublicationsPublishingReaderReagentResearch PersonnelResolutionRoleSeminalSeriesServicesSignal TransductionStrokeStructureSurfaceSystemT-Cell Immunologic SpecificityT-Cell ReceptorT-LymphocyteTechniquesTechnologyTestingTimeTractionTrainingWeightWorkadhesion receptorcancer cellcell growthcommercializationcommunity engagementdesignforce sensorhigh throughput analysisimprovedinterestmechanical forcemechanical signalmechanotransductionnanoscalenew technologyprototypepublic health relevancereceptorrecruitresponsesymposiumtechnology developmenttoolvirtual
项目摘要
Project summary
The proposed Center on Probes for Molecular Mechanotechnology (CPMM) will work to develop and optimize
technologies to enable the study of mechanobiology and mechanotransduction pathways in living cells. The
CPMM includes three highly synergistic Technology Development Projects (TDPs) that will be led by Alexa
Mattheyses, Khalid Salaita, and Yonggang Ke who have a strong track record of jointly publishing and working
together to developed tension probe technologies. In TDP#1: High resolution probes for mechanobiology, we
will create “indestructible” probes that can push the limits of spatial and orientation resolution for the DNA tension
probe technology. Tension-PAINT imaging will be refined to achieve realtime 20 nm spatial mapping of forces
and to combine this with immunostaining to map the proteins that assemble within proximity to mechanically
active receptors. Force orientation will be mapped using fluorescence polarization methods with turn-key
commercial microscopes. In TDP#2: Probes for mechanical tagging, we will develop methods of force-induced
tagging. The central design feature is a DNA probe that mediates a binding event or dissociation event at
threshold levels of force. Cells are tagged based on the magnitude and frequency of mechanical events
generated by a cell surface receptors. This TDP will lead to high-throughput analysis of cells using flow cytometry
and will also allow for proteomic analysis to open the door to “mechanomics”. Under TDP#3: Amplified force
sensors, the central technology here is responsive DNA structures that amplify mechanical inputs. The CPMM
has nine associated inaugural Driving Biomedical Projects (DBPs) led by a team of geographically diverse
collaborators. DBPs #1-#4 are focused on mechanobiology of T cells and use CPMM tools to test the
mechanosensor function of the T cell receptor (TCR) and the adhesion receptor LFA-1. DBP#5 focuses on the
heterogeneity in cancer cells. DBP#6 and #7 target the mechanosensor responses of platelets. Finally, DBP#8
and #9 address fundamental questions of the role of mechanics in focal adhesions. Our prototype TDP
technologies provide methods to measure molecular forces with the same ease and simplicity as that of
immunostaining, flow cytometry, PCR and ELISA. But unlike these mainstream techniques, mechano-imaging,
mechano-PCR, mechano-flow, and mechano-ELISA are not commercialized. Hence, the reagents and surface
preparation protocols and data analysis routines have to be custom prepared by the end user. This can be
challenging to the non-expert and is not routine. Therefore, the CPMM will integrate a strong Community
Engagement (CE) component. CE activities will focus on hands-on training workshops, publication of methods
articles, virtual seminar series, industry engagement, a strong web presence and engagement with three key
mechanobiology conferences that will help accelerate adoption of the tension probe technology. These CE
activities will ultimately lead to commercialization which will enable wide spread dissemination across the various
cell biology communities.
项目概要
拟议的分子机械技术探针中心(CPMM)将致力于开发和优化
能够研究活细胞中的机械生物学和机械传导途径的技术。这
CPMM 包括三个高度协同的技术开发项目 (TDP),这些项目将由 Alexa 领导
Mattheyses、Khalid Salaita 和 Yonggang Ke 在联合出版和工作方面有着良好的记录
共同开发张力探针技术。在 TDP#1:机械生物学的高分辨率探针中,我们
将创造出“坚不可摧”的探针,可以突破 DNA 张力的空间和方向分辨率的极限
探针技术。 Tension-PAINT 成像将得到改进,以实现力的实时 20 nm 空间映射
并将其与免疫染色相结合,以绘制在机械附近组装的蛋白质的图谱
活性受体。将使用交钥匙荧光偏振方法来绘制力方向
商业显微镜。在 TDP#2:机械标记探针中,我们将开发力诱导方法
标记。核心设计特征是 DNA 探针,可在以下位置介导结合事件或解离事件:
力的阈值水平。根据机械事件的幅度和频率对细胞进行标记
由细胞表面受体产生。该 TDP 将导致使用流式细胞术对细胞进行高通量分析
还将允许蛋白质组学分析打开“力学组学”的大门。 TDP#3 下:力量增强
传感器,这里的核心技术是放大机械输入的响应性 DNA 结构。 CPMM
有九个相关的首个驱动生物医学项目 (DBP),由来自不同地域的团队领导
合作者。 DBP #1-#4 专注于 T 细胞的力学生物学,并使用 CPMM 工具来测试
T 细胞受体 (TCR) 和粘附受体 LFA-1 的机械传感器功能。 DBP#5 重点关注
癌细胞的异质性。 DBP#6 和 #7 针对血小板的机械传感器反应。最后,DBP#8
和#9解决了力学在粘着斑中的作用的基本问题。我们的原型 TDP
技术提供了与测量分子力相同的轻松和简单的方法
免疫染色、流式细胞术、PCR 和 ELISA。但与这些主流技术不同的是,机械成像
mechano-PCR、mechano-flow 和 mechano-ELISA 尚未商业化。因此,试剂和表面
准备方案和数据分析例程必须由最终用户定制准备。这可以是
对非专家来说具有挑战性,而且不是常规的。因此,CPMM 将整合一个强大的社区
参与 (CE) 组件。 CE 活动将侧重于实践培训研讨会、方法出版
文章、虚拟研讨会系列、行业参与、强大的网络存在以及三个关键的参与
机械生物学会议将有助于加速张力探针技术的采用。这些CE
活动最终将导致商业化,从而能够在各个领域广泛传播
细胞生物学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khalid S Salaita其他文献
Khalid S Salaita的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khalid S Salaita', 18)}}的其他基金
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles (RADx-rad / SEED Administrative Supplement)
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台(RADx-rad / SEED 行政补充文件)
- 批准号:
10648924 - 财政年份:2022
- 资助金额:
$ 146.8万 - 项目类别:
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台
- 批准号:
10321002 - 财政年份:2020
- 资助金额:
$ 146.8万 - 项目类别:
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台
- 批准号:
10264612 - 财政年份:2020
- 资助金额:
$ 146.8万 - 项目类别:
Developing a Bioanalytical Toolkit to Study the Mechanobiology of Juxtacrine Signaling
开发生物分析工具包来研究近分泌信号传导的力学生物学
- 批准号:
9894683 - 财政年份:2017
- 资助金额:
$ 146.8万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 146.8万 - 项目类别:
Standard Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 146.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




