Engineered Granular Hydrogels for Endogenous Tissue Repair
用于内源性组织修复的工程颗粒水凝胶
基本信息
- 批准号:10629201
- 负责人:
- 金额:$ 55.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-26 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAdvanced DevelopmentAlginatesAnimal ModelAreaAttenuatedBiochemicalBiocompatible MaterialsBiologicalBiological ProcessBiomedical EngineeringBiophysicsBlood VesselsCardiacCardiac MyocytesCause of DeathCell CommunicationCellsChemotactic FactorsClinicalClinical TrialsCollaborationsCollagenDepositionDevelopmentDilatation - actionEconomic BurdenEncapsulatedEndothelial CellsEngineeringExhibitsExtracellular MatrixFamily suidaeGelGerm CellsHealthcare SystemsHeartHeart failureHistologicHyaluronic AcidHydrogelsImmuneIn VitroInfarctionInfiltrationInflammatory ResponseInjectableInjectionsIntensive CareInvadedIschemiaLeft Ventricular RemodelingLeft ventricular structureMechanicsMicrofluidic MicrochipsMicrofluidicsModelingMyocardialMyocardial InfarctionMyocardial ReperfusionMyocardiumMyofibroblastNatural regenerationNatureOutcomeParticle SizePatient-Focused OutcomesPatientsPeptide HydrolasesPhasePhenotypePolymersPopulationPorosityProcessPropertyPublic HealthRattusReadinessReperfusion InjuryReperfusion TherapyReportingRodentRoleSignal TransductionSiliconStressStromal CellsStructureSupporting CellSurgeonTechnologyTestingTherapeutic EffectThinnessTissue HarvestingTissue ViabilityTissuesTranslationsUnited StatesWorkadverse outcomeangiogenesisbiomaterial developmentcardiac repairchemokineclinically relevantdensitydesignexperiencefabricationfunctional improvementhealingheart functionimprovedimproved outcomein vivoinflammatory modulationinnovationinterstitialnovelparticlepreservationrecruitregenerativerepairedresponsesafety and feasibilityscale uptissue repairtranslational potentialtranslational therapeuticswelfare
项目摘要
Abstract
Myocardial infarction (MI) and the resulting left ventricular remodeling may compromise cardiac function and
eventually result in heart failure. Although there are limited current treatment options for these patients beyond
re-perfusion, a number of biomaterial therapies are currently being developed and have even progressed to
clinical trials. Our lab with our clinical collaborators have been exploring the use of injectable hydrogels for over
a decade to provide both mechanical and biological signals to the heart during the acute phase of MI, to alter
the LV remodeling response and to improve cardiac function. Often, these hydrogels are delivered as a
“pocket” of material within the myocardium with initial cell interactions only at the hydrogel periphery; however,
we now look to design “active” strategies where the material design can guide tissue repair through porosity
and engineered hydrogel signals. To accomplish this, we propose the development and application of granular
hydrogels – comprised of assembled microgel subunits that exhibit shear-thinning properties for injectability
and inherent interstitial porosity for cell invasion. Our guiding hypothesis is that the injection of granular
hydrogels will permit cellular invasion to increase vascular density, matrix accumulation, and improve
functional outcomes after MI. Importantly, particle-based materials are also known to promote a pro-healing
response based on their structure, leading to early collagen deposition, which can be leveraged to promote
infarct stabilization. Due to the modular nature of granular hydrogels, we propose three Aims to better
understand their structure-function properties towards their translation as an MI therapy. In Aim 1, we fabricate
microgels with high-throughput microfluidic approaches to form granular hydrogels where biophysical features,
namely particle size and the introduction of inter-particle interactions, are altered. We explore how these
parameters influence cell invasion, the maturation of vascular structures, and improve cardiac function when
assessed in an ischemia-reperfusion MI model in rodents. In Aim 2, we then seek to understand how the
addition of biochemical signals in granular hydrogels, including the protease-degradation of select microgel
populations and local release of the chemoattractant stromal cell derived factor 1a further improve outcomes.
Lastly, in Aim 3, we look towards translation with the development of advanced microfluidics for the rapid
fabrication of granular hydrogels and then evaluate select compositions in a clinically-relevant ischemia-
reperfusion model in pigs. Our study is supported by extensive preliminary work and expertise, including
biomaterials development for cardiac repair (Burdick), microfluidic design for particle fabrication and scale-up
(Issadore), and animal models for the assessment of therapies for MI (Atluri/Gorman). The significance of
this work is potentially profound, as it develops an acellular injectable hydrogel treatment for MI by
recruiting endogenous cell populations in the early post-MI period to limit adverse LV remodeling.
摘要
心肌梗死(MI)和由此导致的左心室重塑可能会损害心脏功能,
最终导致心力衰竭尽管目前对这些患者的治疗选择有限,
再灌注,目前正在开发许多生物材料疗法,甚至已经发展到
临床试验我们的实验室与我们的临床合作者一直在探索使用可注射水凝胶超过
在MI急性期向心脏提供机械和生物信号,
改善心功能。通常,这些水凝胶作为一种药物递送。
心肌内材料的“口袋”仅在水凝胶外围具有初始细胞相互作用;然而,
我们现在希望设计“主动”策略,其中材料设计可以通过孔隙引导组织修复,
和工程水凝胶信号。为了实现这一目标,我们提出了粒度的发展和应用,
水凝胶-由组装的微凝胶亚单元组成,其表现出可注射性的剪切稀化特性
和细胞侵入的固有间隙孔隙度。我们的指导假设是,
水凝胶将允许细胞侵入,以增加血管密度、基质积累,并改善
MI后的功能结局。重要的是,还已知基于颗粒的材料促进促愈合,
基于其结构的反应,导致早期胶原蛋白沉积,这可以用来促进
梗死稳定。由于颗粒水凝胶的模块化性质,我们提出了三个目标,以更好地
了解它们的结构-功能特性,将其转化为MI治疗。在目标1中,我们制造
微凝胶与高通量微流体方法形成粒状水凝胶,
即颗粒尺寸和颗粒间相互作用的引入被改变。我们探索这些
参数影响细胞侵袭,血管结构的成熟,并改善心脏功能,
在啮齿动物的缺血-再灌注MI模型中评估。在目标2中,我们试图了解
在颗粒状水凝胶中添加生化信号,包括选择微凝胶的蛋白酶降解
群体和化学引诱物基质细胞衍生因子1a的局部释放进一步改善结果。
最后,在目标3中,我们期待随着先进微流体技术的发展,
制造颗粒状水凝胶,然后在临床相关的局部缺血中评估选择的组合物,
猪再灌注模型。我们的研究得到了广泛的前期工作和专业知识的支持,包括
用于心脏修复的生物材料开发(Burdick),用于颗粒制造和放大的微流体设计
(Issadore),和用于评估MI疗法的动物模型(Mexicuri/Gorman)。的意义
这项工作具有潜在的深远意义,因为它开发了一种用于MI的无细胞可注射水凝胶治疗,
在MI后早期招募内源性细胞群以限制不利的LV重塑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason A Burdick其他文献
High-throughput stem-cell niches
高通量干细胞小生境
- DOI:
10.1038/nmeth.1745 - 发表时间:
2011-10-28 - 期刊:
- 影响因子:32.100
- 作者:
Jason A Burdick;Fiona M Watt - 通讯作者:
Fiona M Watt
Jason A Burdick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason A Burdick', 18)}}的其他基金
Image Guided Delivery of Bioresponsive Hydrogels
生物响应性水凝胶的图像引导递送
- 批准号:
10078547 - 财政年份:2017
- 资助金额:
$ 55.88万 - 项目类别:
2014 Signal Transduction by Engineered Extracellular Matrices Gordon Research Con
2014 年工程细胞外基质信号转导戈登研究会
- 批准号:
8710776 - 财政年份:2014
- 资助金额:
$ 55.88万 - 项目类别:
Localized Targeting of Matrix Proteases Following Myocardial Infarction
心肌梗塞后基质蛋白酶的局部靶向
- 批准号:
8372883 - 财政年份:2012
- 资助金额:
$ 55.88万 - 项目类别:
Localized Targeting of Matrix Proteases Following Myocardial Infarction
心肌梗塞后基质蛋白酶的局部靶向
- 批准号:
8725398 - 财政年份:2012
- 资助金额:
$ 55.88万 - 项目类别:
Localized Targeting of Matrix Proteases Following Myocardial Infarction
心肌梗塞后基质蛋白酶的局部靶向
- 批准号:
8517805 - 财政年份:2012
- 资助金额:
$ 55.88万 - 项目类别:
Localized Targeting of Matrix Proteases Following Myocardial Infarction
心肌梗塞后基质蛋白酶的局部靶向
- 批准号:
8676930 - 财政年份:2012
- 资助金额:
$ 55.88万 - 项目类别:
POLYMER/NANOROD COMPOSITES FOR CONTROLLED DRUG DELIVERY
用于控制药物输送的聚合物/纳米棒复合材料
- 批准号:
8169550 - 财政年份:2010
- 资助金额:
$ 55.88万 - 项目类别:
Dynamic Fibrous Scaffolds for Repairing Dense Connective Tissues
用于修复致密结缔组织的动态纤维支架
- 批准号:
10326336 - 财政年份:2009
- 资助金额:
$ 55.88万 - 项目类别:
Engineering Developmental Microenvironments: Cartilage Formation and Maturation
工程发育微环境:软骨的形成和成熟
- 批准号:
7653444 - 财政年份:2009
- 资助金额:
$ 55.88万 - 项目类别:
Dynamic Fibrous Scaffolds for Engineering Dense Connective Tissues
用于工程致密结缔组织的动态纤维支架
- 批准号:
7626527 - 财政年份:2009
- 资助金额:
$ 55.88万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 55.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 55.88万 - 项目类别:
Standard Grant