Pericytes as metabolic sentinels in the control of brain blood flow in health and Alzheimer's disease
周细胞作为代谢哨兵控制健康和阿尔茨海默氏病的脑血流
基本信息
- 批准号:10629296
- 负责人:
- 金额:$ 38.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAcuteAdenosine TriphosphateAffectAgingAgonistAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAmericanAstrocytesBloodBlood VesselsBlood capillariesBlood flowBrainBrain DiseasesCalciumCalcium ChannelCellsCerebrovascular CirculationCerebrumCommunicationCompensationCouplingDataDementiaDevelopmentDiameterDisease ProgressionElectrophysiology (science)ElementsEndothelial CellsEnergy SupplyEnsureEventFatigueFoundationsFunctional disorderGap JunctionsGlucoseHealthHemorrhageHomeostasisHyperemiaHyperglycemiaImpaired cognitionImpairmentIon ChannelLinkMeasuresMediatingMetabolicMetabolismMolecularMusNeurogliaNeuronal DysfunctionNeuronsOxygenPathologicPericytesPhysiologyPopulationPositioning AttributePotassiumProcessProtocols documentationPublishingRegulationRelaxationRoleSLC2A1 geneSentinelSignal TransductionSliceSmooth MuscleTestingTherapeutic InterventionTimeTreesWorkarteriolebrain cellbrain metabolismbrain parenchymacapillary bedcerebral capillarydeprivationefficacy evaluationexperimental studyfallsmind controlmouse modelmultiphoton imagingneuralneurovascular couplingnovelnovel therapeuticsparenchymal arteriolespatch clamppromoterresponsesugartargeted treatment
项目摘要
Neurons lack energy stores and thus their ongoing function is dependent on the delivery of energy
substrates in the blood. Precise control of brain blood flow is therefore essential for neuronal
health. However, the mechanisms through which blood flow through the brain is regulated remain
unclear. Furthering our understanding of this process is critical, as it is increasingly appreciated
that disruption of brain blood flow is one of the earliest pathological events in Alzheimer’s disease,
and may be a key contributory factor to disease progression. Thus, advancing our understanding
of the mechanisms of blood flow control in normal physiology, and their disruption in the context
of Alzheimer’s disease, may reveal novel and much needed targets for therapeutic intervention.
Pericytes are mural cells that reside on brain capillaries, interposed between endothelial cells and
astrocytic endfeet. It is thought that these cells contribute to the control of brain blood flow but
mechanistic details are lacking. Based on the preliminary data in this proposal, we posit that
pericytes are ideally positioned and equipped to act as metabolic sentinels in the control of brain
blood flow. Specifically, we show for the first time that acutely isolated brain pericytes possess
functional KATP channels, and we demonstrate that these open in response to depletion of glucose
to cause contractile capillary pericyte, and upstream arteriole smooth muscle, relaxation. This
drives capillary and arteriole dilation and an increase in brain blood flow. This has profound
implications for understanding how blood flow is controlled in the brain, as local glucose
concentrations are known to transiently decrease during neuronal activity. Our data offer an
explanation for this phenomenon—during increases in neuronal glucose utilization, pericytes
sense falling local concentrations which triggers KATP-mediated hyperpolarizing electrical signals
that relax both pericytes themselves and upstream arteriolar smooth muscle. This increases blood
flow to compensate for the local decrease in glucose, thereby protecting brain metabolism.
Strikingly, this pericyte metabolism-electrical coupling mechanism is profoundly disrupted in a
mouse model of Alzheimer’s disease, suggesting that loss of this blood flow control mechanism
may contribute to a mismatch between neuronal energy demand and supply, precipitating neuronal
dysfunction and cognitive decline. Using these findings as a springboard, we propose to determine
the molecular composition and metabolic regulation of KATP channels in pericytes throughout the
brain. We will define the precise mechanisms that engage pericyte KATP channels to control blood
flow, and we will determine the mechanisms through which pericyte control of brain blood flow
is disrupted in Alzheimer’s disease.
神经元缺乏能量储存,因此它们的持续功能依赖于能量的传递
血液中的底物。因此,精确控制脑血流量对于神经元的正常运转至关重要。
健康。然而,调节流经大脑的血流的机制仍然存在
不清楚。加深我们对这一过程的理解至关重要,因为它越来越受到重视
脑血流中断是阿尔茨海默病最早的病理事件之一,
并且可能是疾病进展的关键因素。从而加深我们的理解
正常生理中血流控制的机制及其在背景下的破坏
阿尔茨海默病的研究可能会揭示新的且急需的治疗干预目标。
周细胞是位于脑毛细血管上的壁细胞,介于内皮细胞和
星形细胞末足。人们认为这些细胞有助于控制脑血流,但
缺乏机械细节。根据本提案中的初步数据,我们认为
周细胞的位置和装备非常理想,可以充当控制大脑的代谢哨兵
血流(量。具体来说,我们首次表明,急性分离的大脑周细胞具有
功能性 KATP 通道,我们证明这些通道会响应葡萄糖的消耗而打开
引起毛细血管周细胞收缩,及上游小动脉平滑肌松弛。这
促进毛细血管和小动脉扩张并增加脑血流量。这有着深刻的
对于理解大脑中的血流如何控制(如局部葡萄糖)的影响
已知浓度在神经元活动期间短暂降低。我们的数据提供了
这种现象的解释——在神经元葡萄糖利用率增加期间,周细胞
感知局部浓度下降,触发 KATP 介导的超极化电信号
放松周细胞本身和上游小动脉平滑肌。这样可以增加血量
流量来补偿局部葡萄糖的减少,从而保护大脑的新陈代谢。
引人注目的是,这种周细胞代谢-电耦合机制在
阿尔茨海默病小鼠模型,表明这种血流控制机制的丧失
可能会导致神经元能量需求和供应之间的不匹配,从而导致神经元
功能障碍和认知能力下降。以这些发现为跳板,我们建议确定
周细胞中 KATP 通道的分子组成和代谢调节
脑。我们将定义利用周细胞 KATP 通道控制血液的精确机制
流,我们将确定周细胞控制脑血流的机制
在阿尔茨海默病中被破坏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas A Longden其他文献
Thomas A Longden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas A Longden', 18)}}的其他基金
Pericytes as metabolic sentinels in the control of brain blood flow in health and Alzheimer's disease
周细胞作为代谢哨兵控制健康和阿尔茨海默氏病的脑血流
- 批准号:
10428632 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别:
Vascular Signaling Plasticity - Novel Concepts and Tools for Studying Neurovascular Interactions in Health and Disease
血管信号可塑性 - 研究健康和疾病中神经血管相互作用的新概念和工具
- 批准号:
10002378 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别:
Pericytes as metabolic sentinels in the control of brain blood flow in health and Alzheimer's disease
周细胞作为代谢哨兵控制健康和阿尔茨海默氏病的脑血流
- 批准号:
10241247 - 财政年份:2020
- 资助金额:
$ 38.63万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 38.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 38.63万 - 项目类别:
Operating Grants














{{item.name}}会员




