Metamaterials Implants for Magnetic Resonance Imaging
用于磁共振成像的超材料植入物
基本信息
- 批准号:10668469
- 负责人:
- 金额:$ 69.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-20 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccidentsAdoptedAlzheimer&aposs DiseaseAnatomyAnimal TestingArrhythmiaBiocompatible MaterialsBrainCharacteristicsChokingChronicClinicalClinical assessmentsCoiled BodiesComputational TechniqueDeep Brain StimulationDefibrillatorsDepositionDevelopmentDevicesDiagnosisDystoniaElectric ConductivityElectric StimulationElectrocorticogramElectrodesElectroencephalographyElectromagneticsElectrophysiology (science)EpilepsyFamily suidaeFilamentFilmFrequenciesFunctional Magnetic Resonance ImagingGelfilmGeneral HospitalsGenerationsGoalsHeadHeatingHistologyHumanImageImplantImplanted ElectrodesKnowledgeLabelLeadLeechesLiftingLiteratureLocationMRI ScansMagnetic Resonance ImagingMalignant NeoplasmsMass Spectrum AnalysisMassachusettsMeasurementMeasuresMedicalMedical DeviceMedicineModelingMorphologic artifactsPacemakersParalysedParkinson DiseasePathologicPatientsPerformancePolymersPostoperative PeriodPropertyRefractoryReportingResearchRestRodentSafetyScanningSourceSpinal CordStrokeSurfaceSystemTechnologyTestingTherapeuticTherapeutic EffectThickThinnessTimeTissuesTorqueTraumaTraumatic Brain InjuryUniversitiesabsorptionbiomaterial compatibilitybrain machine interfacecomorbiditydeep brain stimulatordesigndiagnostic tooleffectiveness evaluationefficacy testingefficacy validationelectric impedanceelectrical potentialelectrical propertyexperienceexperimental studyflexibilityfollow-upimplant materialimplantable deviceindividual patientinnovationmanufacturemechanical propertiesmedical implantnanoparticlenanoscalenervous system disorderneuralneural implantneurophysiologyneurotransmissionnew technologynovelporcine modelpreventradio frequencysafety assessmentsevere injurysimulationsoft tissuesuccessvaporvibrationvirtual human
项目摘要
Clinical electrical stimulation systems are increasingly common therapeutic options
to treat a broad range of medical conditions, such as cardioverter-defibrillators,
pacemakers, spinal cord stimulators, and deep brain stimulators. Despite their
remarkable success, a significant limitation of these medical devices is their limited
compatibility with magnetic resonance imaging (MRI), a standard and widely used
diagnostic tool in medicine. A primary concern when performing MRI examinations in
patients with electrically conductive implants is the antenna effect, which can potentially
cause a large amount of energy to be absorbed in the tissue, leading to heat-related
severe injury. In this application, we propose designing, developing, and testing a novel
metamaterials technology to produce MRI conditional leads that could be used in
implanted electrical recording and stimulation devices. The innovative nanoscale thin-
film metamaterial is truly the only MRI cloaking technology that does not occupy any
"brain" space compared to additional RF-choking components. We will develop a
general framework for any arbitrary electrical stimulation lead implanted in the body to
prevent a build-up of induced currents and reduce imaging artifacts during a 3 Tesla MRI.
Furthermore, we propose novel electrocorticography (ECoG) electrodes based on
biocompatible materials that will be stretchable, and conformable for optimal
biocompatibility, safety, and performance. These novel electrodes will be thin and
flexible and can be created in a wide range of configurations (i.e., strips, grids, and
various combinations) for different applications. Notably, the electrodes will be MRI-safe
and CT artifact-free, allowing for perfect registration of the electrode location to the brain
anatomy. The electrodes also permit the combination of intracranial (depth and cortical)
recordings with fMRI imaging, leading to a greater understanding of the neural
organization in both individual patients and for neuroscientific knowledge.
A complete test plan is in place that includes electromagnetic numerical simulation to
support the design of both depth and ECoG Neuropace electrodes and bench-top and
large animal testing for efficacy validation and biocompatibility on rodents. This project's
long-term goal is to develop electrical stimulation system leads compatible with 3 Tesla
MRI and other external radiofrequency sources, providing significant benefits to patients
who may require implanted stimulators to treat pathological conditions such as heart
arrhythmias and Parkinson's disease, epilepsy, and stroke.
临床电刺激系统是越来越常见的治疗选择
为了治疗广泛的医学病症,例如心律转复-复律器,
起搏器、脊髓刺激器和深部脑刺激器。尽管他们
尽管这些医疗设备取得了显著的成功,但是这些医疗设备的显著局限性是它们的有限性。
与磁共振成像(MRI)的兼容性,MRI是一种标准且广泛使用的
医学上的诊断工具进行MRI检查时的主要问题是
植入导电植入物的患者是天线效应,
导致大量的能量在组织中被吸收,导致与热有关的
严重受伤。在本申请中,我们提出设计,开发和测试一种新的
超材料技术生产可用于MRI条件性导线
植入的电记录和刺激装置。创新的纳米薄-
薄膜超材料是真正唯一的MRI隐身技术,不占用任何
“大脑”空间相比,额外的射频扼流圈组件。我们将开发一个
植入体内的任意电刺激引线的一般框架
防止感应电流积聚并减少3特斯拉MRI期间的成像伪影。
此外,我们提出了新的皮层电图(ECoG)电极的基础上,
生物相容性材料,将是可拉伸的,并符合最佳
生物相容性、安全性和性能。这些新型电极将是薄的,
灵活并且可以以宽范围的配置(即,条带、网格和
各种组合)用于不同的应用。值得注意的是,电极将是MRI安全的
无CT伪影,可将电极位置完美配准到大脑
解剖学电极还允许颅内(深度和皮质)
记录与功能磁共振成像,导致更好地了解神经
组织在个体患者和神经科学知识。
制定了完整的测试计划,其中包括电磁数值模拟,
支持深度和ECoG Neuropace电极和台式电极的设计,
在啮齿动物上进行功效验证和生物相容性的大型动物试验。此项目的
长期目标是开发与3特斯拉兼容的电刺激系统电极导线
MRI和其他外部射频源,为患者提供显著受益
这些患者可能需要植入刺激器来治疗病理状况
心律失常和帕金森氏病癫痫和中风
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Paul Aronson其他文献
Joshua Paul Aronson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 69.46万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 69.46万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 69.46万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 69.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 69.46万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 69.46万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 69.46万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 69.46万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 69.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 69.46万 - 项目类别:
Research Fellowships