Computational Framework to Enhance Antenna-based Electromagnetic Imaging
增强基于天线的电磁成像的计算框架
基本信息
- 批准号:10667975
- 负责人:
- 金额:$ 41.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2025-09-20
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalBedsBig DataBiologicalBladderBrainBreastBreast Cancer DetectionCancer DetectionClinicalCollectionComplexConsumptionCouplingDataData SetDevelopmentDisadvantagedDiseaseElectromagnetic FieldsElectromagneticsElementsExtremely High Frequency Radio WavesHeadHealthImageImaging technologyIndividualInflammationLawsLesionLocalized LesionLocationMachine LearningMalignant NeoplasmsMeasurementMedical ImagingMicroscopyModelingMonitorNonionizing RadiationOpticsOsteoporosisOutcomePersonal SatisfactionPhasePositioning AttributeResearchResolutionShapesStrokeTechnologyTestingTimeTissue imagingTissuesTrainingVariantVisualizationWaterclinical applicationclinical translationcomputer frameworkcostcost effectivedensitydesignelectric fieldhealinghealth assessmenthigh resolution imagingimaging capabilitiesmicrowave electromagnetic radiationneural networknovel strategiespersonalized medicineportabilitypreventprototyperadio frequencyreconstructiontooltransmission process
项目摘要
Project Summary
Electromagnetic (EM) imaging has demonstrated significant potential to become a powerful medical imaging
technology. Developments in microwave, millimeter-wave, and radio-frequency technology over the last few
decades have demonstrated applications in fields such as brain stroke identification and stroke-type
differentiation, breast cancer detection, bladder state tracking, and osteoporosis monitoring, among others. EM
imaging’s key advantages include deep tissue imaging, non-ionizing radiation, and cost-effective/portable form
factors. Unfortunately, EM imaging suffers from two key disadvantages that limit its clinical utility: 1) traditional
reconstruction models cannot efficiently account for microwave scattering in complex and heterogeneous
biological tissues; and 2) current state-of-the-art antenna arrays are limited by the physical size of individual
antenna elements, which do not allow measurements to be densely or optimally captured around an object. This
drastically reduces imaging resolution, and can prevent accurate visualization of lesion size and shape. This
proposal develops a new EM imaging paradigm where measurements can be collected from a set of
optimized antenna locations to drastically enhance 3D EM imaging capabilities. Our proposed project will
include two major components: 1) computational frameworks will be formulated to reconstruct 3D
permittivity from noninvasive microwave scattering measurements. These frameworks will leverage recent
advances in big-data computing, and will utilize optimization-based and machine-learning tools to model
microwave scattering through biological tissue; and 2) specialized antenna arrays will be developed to collect
microwave scattering measurements, with individual antenna elements positioned at either ultra-high
densities or optimized non-regular spacings. The antenna spacings in the non-regular spaced array will be
computed based on identifying antenna-positions within the ultra-high-density array that have a greater effect
than others on 3D permittivity reconstruction. Identifying these positions will enable 3D permittivity to be
accurately reconstructed with fewer measurements and less reconstruction time. The utility of this new approach
will be demonstrated through application-oriented testing in the context of both imaging of the head to
differentiate stroke-type and of the breast to detect and monitor cancer. In this proposal, the test-case is on using
microwaves to reconstruct 3D dielectric permittivity (which is an indicator for tissue water content, and is modified
by disease state), but this paradigm can readily be extended to other regions of the electromagnetic spectrum.
Overall, this project will enable the high resolution imaging with accurate localization of lesion size and shape
that is pivotal for successful clinical translation of EM imaging. The outcomes of this project will be applicable to
the diverse clinical applications of EM imaging, spanning from cancer detection, personalized treatment progress
monitoring, quantification of inflammation, to real-time tracking of thermal therapies.
项目摘要
电磁成像已显示出成为一种强大的医学成像的巨大潜力
技术过去几年微波、毫米波和射频技术的发展
几十年来,已在脑卒中识别和中风类型等领域展示了应用
此外,它还提供了多种应用,包括肿瘤鉴别、乳腺癌检测、膀胱状态跟踪和骨质疏松监测等。埃姆
成像的主要优势包括深层组织成像、非电离辐射和经济实惠/便携的形式
各种因素。不幸的是,EM成像有两个限制其临床应用的关键缺点:1)传统的
重建模型不能有效地解释复杂和非均匀的微波散射
生物组织;以及2)当前最先进的天线阵列受到个人物理尺寸的限制
天线元件,不允许在物体周围密集或最佳地捕获测量结果。这
极大地降低了成像分辨率,并可能妨碍准确显示病变大小和形状。这
Proposal开发了一种新的电磁成像范例,其中测量可以从一组
优化天线位置,大幅增强3D EM成像能力。我们提议的项目将
包括两个主要部分:1)将制定计算框架以重建3D
非侵入性微波散射测量的介电常数。这些框架将利用最近的
在大数据计算方面取得了进展,并将利用基于优化和机器学习的工具来建模
微波在生物组织中的散射;以及2)将开发专门的天线阵列来收集
微波散射测量,单个天线单元位于超高
密度或优化的非规则间距。非规则间隔阵列中的天线间距将为
基于识别超高密度阵列中具有更大影响的天线位置来计算
在三维介电常数重建方面优于其他方法。识别这些位置将使3D介电常数
精确重建,测量更少,重建时间更短。这一新方法的实用性
将通过面向应用程序的测试在头部成像到
区分中风类型和乳房,以检测和监测癌症。在这个提案中,测试用例是关于使用
用于重建3D介电常数的微波(这是组织水分含量的指示器,经过修改
疾病状态),但这种模式可以很容易地扩展到电磁频谱的其他区域。
总体而言,该项目将使高分辨率成像能够准确定位病变大小和形状
这对于EM成像的成功临床翻译至关重要。该项目的成果将适用于
电磁成像的多样化临床应用,从癌症检测、个性化治疗的进展
监测、量化炎症,到实时跟踪热疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shwetadwip Chowdhury其他文献
Shwetadwip Chowdhury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shwetadwip Chowdhury', 18)}}的其他基金
Structured Illumination Computational Microscopy with UV Surface Excitation (MUSE) for Multispectral Super-Resolution Histology
用于多光谱超分辨率组织学的紫外表面激发 (MUSE) 结构照明计算显微镜
- 批准号:
10213544 - 财政年份:2018
- 资助金额:
$ 41.78万 - 项目类别:
Structured Illumination Computational Microscopy with UV Surface Excitation (MUSE) for Multispectral Super-Resolution Histology
用于多光谱超分辨率组织学的紫外表面激发 (MUSE) 结构照明计算显微镜
- 批准号:
9788760 - 财政年份:2018
- 资助金额:
$ 41.78万 - 项目类别:
相似海外基金
Predicticting performance of carbon capture in intensified rotating packed beds using CFD
使用 CFD 预测强化旋转填充床中的碳捕获性能
- 批准号:
2883569 - 财政年份:2023
- 资助金额:
$ 41.78万 - 项目类别:
Studentship
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Quantifying the status and success on restored native oyster Ostrea edulis beds in the Solent.
量化索伦特海峡恢复的本地牡蛎 Ostrea edulis 床的状态和成功。
- 批准号:
2759209 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Studentship
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Discovery Grants Program - Individual
Energy to chemicals using direct electrical current flowing through dense beds
利用流过致密床的直接电流将能量转化为化学物质
- 批准号:
RGPIN-2019-03912 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Discovery Grants Program - Individual
Treatment of resected brain tumour beds using nanoparticle enhanced radiotherapy
使用纳米粒子增强放射治疗治疗切除的脑瘤床
- 批准号:
10032278 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Collaborative R&D
SmUPS: Smart Uninterruptable Power Suppy for Home Healthcare Virtual Beds Monitoring and Power Backup
SmUPS:用于家庭医疗保健虚拟床监控和电源备份的智能不间断电源
- 批准号:
10045010 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Grant for R&D
Exosome treatment-induced mechanisms in chronic wound beds - Resubmission - 1
慢性伤口床中外泌体治疗诱导的机制 - 重新提交 - 1
- 批准号:
10350276 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Exosome treatment-induced mechanisms in chronic wound beds - Resubmission - 1
慢性伤口床中外泌体治疗诱导的机制 - 重新提交 - 1
- 批准号:
10588244 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Research on technology to measure the condition of a wide range of river embankments and river beds in three dimensions in real time and with high accuracy
大范围河堤河床三维实时高精度测量技术研究
- 批准号:
22K04653 - 财政年份:2022
- 资助金额:
$ 41.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)