Mechanism of cryptococcal fitness, innate defense subversion, and the adaptive immune skewing in lungs

隐球菌适应性机制、先天防御颠覆和肺部适应性免疫偏差

基本信息

  • 批准号:
    10696521
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

Cryptococcus neoformans (C. neo), is one of the most significant fungal pathogens worldwide. However, much is still unknown on how it interacts with the host to evade and subvert the immune response. Here we propose to study the biological effects of intercepting the trehalose sugar biosynthetic pathway, which our data suggest affects interactions of cryptococcus with multiple lines of host defenses and could serve as an “Achilles heel” for the fungus. Trehalose-6-phosphate synthase (TPS1) catalyzes the first step in the biosynthetic pathway to generate trehalose, a disaccharide that canonically protects C. neo (and other microbes) against stress, which is not synthesized or required by mammalian cells. TPS1 has been described as a virulence factor for C. neo in multiple animal infection models, but the mechanistic underpinnings are undefined. We propose to mechanistically uncover how TPS1-deletion alters fungal-host interactions to drive this increased fungal control. Our preliminary data show that in murine models of pulmonary infection, trehalose-deficient C. neo (tps1Δ) is very rapidly cleared due to improved immune protection. As such, we hypothesize that cryptococcal TPS1 is required to protect the fungus against all 3 lines of pulmonary host defenses via (1) interference with the local resident defenses; (2) the recruitment/activation of the innate immune cells for early fungal control, and (3) modulation of the adaptive memory responses. We propose that trehalose is required to protect C. neo against innate factors in the alveolar space, such as surfactants. Our preliminary data support a role for the surfactant proteins A and D in trehalose-deficient C. neo control (Aim 1). We also propose that the loss of trehalose facilitates rapid fungal clearance by resident innate immune cells, specifically neutrophils (Aim2). Further, our preliminary data suggest that the loss of Tps1-function by Cryptococcus results in an immunostimulation that supports the development of protective skewing and an adaptive immune memory response (Aim 3). This improved the level of immunoprotection supports that targeting the TPS pathway, apart from directly aiding the fungal removal, can induce long-term protective immune memory effects. Eventually, understanding how trehalose alters cryptococcal interactions with host defenses could support the development of a future class of broad antifungal inhibitors that could aid the treatment of multiple types of fungal infections. In summary, this work will provide novel context for how C. neo avoids pulmonary host defenses and how these interactions can be exploited. The studies proposed above make up the scientific basis for the VA CDA-2 program that will provide training and career development for Dr. Kristie Goughenour into an independent VA investigator. Dr. Goughenour completes the third year of her postdoctoral training in the Multidisciplinary T32 Research Training Program in Lung Disease. Her primary research focus is on host-pathogen interactions of pathogenic fungi in pulmonary infections. Her training has provided her with both the technical ability and theoretical framework to dissect both the human host factors and the microbial virulence mechanisms that interact to determine the outcomes of infections. This proposal builds upon her skills in molecular mechanisms of fungal pathogenesis and host responses to fungal pathogens to combine into unique expertise in host immune control of pulmonary fungal pathogens and novel mechanisms of fungal immune evasion. Dr. Goughenour will strengthen her expertise in different aspects of immune processes and learn several new technologies. Her mentoring team of 5 top experts in their respective fields has been carefully developed to provide expertise and career support while she transitions towards independence and to provide aid on the proposed studies.
新型隐球菌(C. neo)是全世界最重要的真菌病原体之一。 然而,关于它如何与宿主相互作用以逃避和破坏免疫反应,目前仍不清楚。 在这里,我们建议研究拦截海藻糖生物合成途径的生物学效应,该途径 我们的数据表明影响隐球菌与多道宿主防御线的相互作用,并且可以作为 真菌的“致命弱点”。海藻糖-6-磷酸合酶 (TPS1) 催化第一步 产生海藻糖的生物合成途径,海藻糖是一种典型地保护新梭菌(和其他 微生物)对抗压力,而压力不是哺乳动物细胞合成或需要的。 TPS1已被描述 在多种动物感染模型中作为 C. neo 的毒力因子,但其机制基础是 不明确的。我们建议从机制上揭示TPS1缺失如何改变真菌-宿主相互作用以驱动 这增加了真菌控制。 我们的初步数据表明,在肺部感染的小鼠模型中,海藻糖缺乏的 C. neo 由于免疫保护的改善,(tps1Δ) 被非常迅速地清除。因此,我们假设隐球菌 TPS1 需要通过以下方式保护真菌免受肺部宿主防御的所有 3 条防线:(1) 干扰 当地居民的防御; (2) 招募/激活先天免疫细胞以进行早期真菌控制, (3)适应性记忆反应的调制。我们建议需要海藻糖来保护 C. neo 对抗肺泡腔中的先天因素,例如表面活性剂。我们的初步数据支持 海藻糖缺陷 C. neo 对照中的表面活性蛋白 A 和 D(目标 1)。我们还建议,损失 海藻糖可促进固有先天免疫细胞(特别是中性粒细胞)快速清除真菌 (Aim2)。 此外,我们的初步数据表明,隐球菌 Tps1 功能的丧失会导致 支持保护性偏差和适应性免疫记忆发展的免疫刺激 响应(目标 3)。这提高了免疫保护水平,支持靶向 TPS 途径,除了 直接帮助去除真菌,可以诱导长期的保护性免疫记忆效应。最终, 了解海藻糖如何改变隐球菌与宿主防御的相互作用可以支持 开发未来一类广泛的抗真菌抑制剂,可以帮助治疗多种类型的真菌感染 真菌感染。总之,这项工作将为 C. neo 如何避免肺部感染提供新的背景。 宿主防御以及如何利用这些相互作用。 上述研究构成了 VA CDA-2 计划的科学基础,该计划将提供 为 Kristie Goughenour 博士提供培训和职业发展,使其成为一名独立的 VA 调查员。博士。 Goughenour 在多学科 T32 研究培训中完成了第三年的博士后培训 肺部疾病计划。她的主要研究重点是病原真菌的宿主与病原体的相互作用 肺部感染。她的培训为她提供了技术能力和理论框架 剖析相互作用的人类宿主因素和微生物毒力机制,以确定 感染的结果。该提案建立在她在真菌发病机制分子机制方面的技能基础上 和宿主对真菌病原体的反应,结合成肺部宿主免疫控制的独特专业知识 真菌病原体和真菌免疫逃避的新机制。 Goughenour 博士会加强她的力量 免疫过程不同方面的专业知识并学习多种新技术。她的导师团队 精心培养了5位各自领域的顶尖专家,提供专业知识和职业支持 同时她向独立过渡并为拟议的研究提供援助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristie D Goughenour其他文献

Kristie D Goughenour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The role of alveolar macrophages and regulatory pathways in post-transplant lung inflammation.
肺泡巨噬细胞和调节途径在移植后肺部炎症中的作用。
  • 批准号:
    23K08315
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MICA: Key mechanisms underlying inhaled GM-CSF's enhancement of phagocytosis and bacterial clearance by human alveolar macrophages.
MICA:吸入 GM-CSF 增强人肺泡巨噬细胞吞噬作用和细菌清除的关键机制。
  • 批准号:
    MR/X005046/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Analysis of pathogenic alveolar macrophages which release IL-1alpha in response to fine particles.
分析响应细颗粒物释放 IL-1α 的致病性肺泡巨噬细胞。
  • 批准号:
    23H03154
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Glutamine Metabolism in Alveolar Macrophages following Influenza A Infection
甲型流感感染后肺泡巨噬细胞的谷氨酰胺代谢
  • 批准号:
    10607319
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The function and regulation of tissue resident alveolar macrophages turnover by host and environmental factors during homeostasis and in infections
稳态和感染期间宿主和环境因素对组织驻留肺泡巨噬细胞周转的功能和调节
  • 批准号:
    471247
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship Programs
Using a Lung on Chip Device to Study Alveolar Macrophages as Intracellular Reservoirs for Staphylococcus aureus
使用肺芯片装置研究肺泡巨噬细胞作为金黄色葡萄球菌的细胞内储库
  • 批准号:
    485971
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Analysis of innate immune response of alveolar macrophages and epithelial-mesenchymal transition of alveolar epithelial cells
肺泡巨噬细胞的先天免疫反应和肺泡上皮细胞的上皮间质转化分析
  • 批准号:
    22K06698
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cholesterol crystal-mediated inflammation in alveolar macrophages: an emerging role inidiopathic lung fibrosis?
胆固醇晶体介导的肺泡巨噬细胞炎症:在特发性肺纤维化中的新兴作用?
  • 批准号:
    462596862
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    WBP Position
Elucidation of idiopathic pneumonia syndrome: Angiotensin 2 activates alveolar macrophages
特发性肺炎综合征的阐明:血管紧张素 2 激活肺泡巨噬细胞
  • 批准号:
    21K16251
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Establishment of novel macrophage cell lines to study the pathogenesis of respiratory bacterial pathogens in lung alveolar macrophages
建立新型巨噬细胞系以研究肺泡巨噬细胞中呼吸道细菌病原体的发病机制
  • 批准号:
    NC/V001019/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了