Machine Learning Based Differential Mobility Spectrometry Library Development
基于机器学习的差分迁移谱库开发
基本信息
- 批准号:10696533
- 负责人:
- 金额:$ 27.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:Analytical ChemistryBenchmarkingBiological MarkersBreath TestsCannabinoidsCellsCharacteristicsChemicalsClassificationClinicalCommunicable DiseasesComplexDataData AnalyticsDetectionDevelopmentDiabetes MellitusDimensionsDiseaseEnvironmentExhalationGas ChromatographyGenerationsGoalsGrantInfectionInjectionsIonsKidney DiseasesLearningLibrariesLinear AlgebraLiver diseasesLungMachine LearningMalignant NeoplasmsMass FragmentographyMeasurementMeasuresMetabolic DiseasesMetabolismMethodsModalityModelingMolecularMolecular AnalysisMolecular StructureNMR SpectroscopyNational Institute of Drug AbuseNeural Network SimulationOpioidPerformanceProcessPropertyPsychotropic DrugsResourcesSamplingScreening for cancerSignal TransductionSourceSpectrometrySpectrum AnalysisStereoisomerTechniquesTestingTimeTrainingTravelUltrafineWorkbiomarker discoverybiomedical scientistchemical standardcommercializationdeep neural networkdetection methoddrug testingearly detection biomarkersexperimental studyinstrumentinterestmultimodalitymultitaskneural network architecturenovelportabilitysignal processingskillssuccessvolatile organic compound
项目摘要
Project Summary
The goal of the project proposed is to develop a gas chromatography and differential mobility spectrometry
(GC/DMS) molecular identification library for volatile organic compounds (VOCs) using a deep neural network
approach. Vox Biomedical scientists will test the hypothesis that a novel, multi-task neural network architecture
can predict characteristics of an previously unseen analyte from its GC/DMS spectrum.
Vox Biomedical is in the process of commercializing the GC/DMS based microAnalyzer instrument, developed
at DRAPER, for detecting the presence of psychoactive drugs and disease through exhaled breath analysis.
While drug detection consists of measuring the concentrations in the exhaled breath of compounds whose
identity is well known (such as psychoactive opioids and cannabinoids), exhaled breath disease detection is
focused on characterization of a particular disease’s exhaled volatile organic compound signature. Volatile
organic compounds (VOCs) are byproducts of cellular metabolism that travel from cells throughout the body to
the lungs, where they are efficiently exhaled in the breath. VOCs have become of interest as biomarkers of
metabolic diseases such as cancer, kidney disease and diabetes. The current generation of exhaled breath VOC
based disease detection methods rely on gas chromatography and mass spectrometry (GC/MS), which, while
highly sensitive, is a complex analytical modality that is expensive, slow, and must be operated by skilled
professionals.
The microAnalyzer instrument’s inherent portability, ease of use, and ability to obtain results at the point-of-
measurements make it an ideal instrument for breath-based disease detection. However, the currently a
GC/DMS peak can only be identified through characterization of a chemical standard or by performing
confirmatory GC/MS analysis using a similar sample. This makes biomarker discovery a resource and time
intensive process. The creation of a VOC chemical identity library, as would result from successful completion
of the proposed project, will allow the identity of samples introduced to the microAnalyzer instrument to be
predicted without the need for confirmatory standard characterization or GC/MS work. This will make biomarker
discovery for disease a less resource intensive process expediting the discovery and confirmation of biomarkers
for early-stage disease detection, ultimately saving lives.
项目摘要
该项目的目标是开发一种气相色谱和差示迁移率光谱
(GC/DMS)分子鉴定库,用于使用深度神经网络的挥发性有机化合物(VOCs)
approach. Vox生物医学科学家将测试一种新的多任务神经网络架构的假设,
可以从GC/DMS光谱中预测以前看不见的分析物的特征。
Vox Biomedical正在将基于GC/DMS的microAnalyzer仪器商业化,
在德雷珀,用于通过呼出气体分析检测精神药物和疾病的存在。
而药物检测包括测量呼出气体中的化合物的浓度,
身份是众所周知的(如精神活性阿片类药物和大麻素),呼出气疾病检测,
专注于特定疾病呼出的挥发性有机化合物特征的表征。挥发性
有机化合物(VOC)是细胞代谢的副产品,从细胞到全身,
肺部,在那里它们被有效地呼出。VOC已经成为感兴趣的生物标志物,
代谢性疾病,如癌症、肾病和糖尿病。当前产生的呼出气VOC
基于的疾病检测方法依赖于气相色谱和质谱(GC/MS),
高灵敏度是一种复杂的分析模式,其昂贵、缓慢,并且必须由熟练的操作人员操作。
专业人士
microAnalyzer仪器固有的便携性、易用性和在检测点获得结果的能力,
测量使其成为基于呼吸的疾病检测的理想仪器。目前,A
GC/DMS峰只能通过表征化学标准品或通过执行
使用类似样品进行确证性GC/MS分析。这使得生物标志物的发现成为一种资源和时间
密集的过程。建立挥发性有机化合物化学特性资料库,
将允许引入microAnalyzer仪器的样品的身份,
无需确证性标准品表征或GC/MS工作即可预测。这将使生物标志物
疾病的发现是一个资源密集程度较低的过程,加快了生物标志物的发现和确认
用于早期疾病检测,最终挽救生命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Golde其他文献
Jacob Golde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Golde', 18)}}的其他基金
Exhaled breath drug detection using differential mobility spectrometry
使用差分迁移光谱法检测呼出气体药物
- 批准号:
10193627 - 财政年份:2020
- 资助金额:
$ 27.57万 - 项目类别:
Exhaled breath drug detection using differential mobility spectrometry
使用差分迁移光谱法检测呼出气体药物
- 批准号:
10327499 - 财政年份:2019
- 资助金额:
$ 27.57万 - 项目类别:
Exhaled breath drug detection using differential mobility spectrometry
使用差分迁移光谱法检测呼出气体药物
- 批准号:
10437033 - 财政年份:2019
- 资助金额:
$ 27.57万 - 项目类别:
Exhaled breath drug detection using differential mobility spectrometry
使用差分迁移光谱法检测呼出气体药物
- 批准号:
10059295 - 财政年份:2019
- 资助金额:
$ 27.57万 - 项目类别:
Exhaled breath drug detection using differential mobility spectrometry
使用差分迁移光谱法检测呼出气体药物
- 批准号:
10771661 - 财政年份:2019
- 资助金额:
$ 27.57万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 27.57万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Studentship
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 27.57万 - 项目类别:
Continuing Grant