Center for Undiagnosed Diseases at Stanford
斯坦福大学未确诊疾病中心
基本信息
- 批准号:10696575
- 负责人:
- 金额:$ 59.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAreaAwardCaringChild HealthCollectionCommunitiesCountryDataData AnalysesDevelopmentDiagnosisDiagnosticDiseaseDissemination and ImplementationEconomicsEducation and OutreachEnrollmentEnsureEquityEvaluationFamilyFoundationsFutureGenerationsGenomicsGoalsHealthcareInsuranceInternationalInvestigationInvestmentsLanguageLeadershipLiteratureMachine LearningMedicalMedical ResearchMethodsMissionModelingMolecular DiagnosisMultiomic DataParticipantPatient CarePatient Outcomes AssessmentsPatient advocacyPatient-Focused OutcomesPatientsPeer GroupPhasePhenotypePhilanthropic FundPlayPrincipal InvestigatorProcessPublicationsRare DiseasesResearchResourcesRoleScientistSiteTechnologyTestingTherapeuticTranslational ResearchTravelUnderrepresented PopulationsUnderserved PopulationUniversitiesUpdateVariantWorkaccurate diagnosisclinical practicecohortdata integrationevidence baseexperiencefallsgenomic datahealth care service utilizationimprovedinnovationmarginalizationmarginalized communitymeetingsmembermetabolomicsmolecular diagnosticsmultiple omicsnovelnovel strategiesoperationoutreachpan-genomepeer networksphenotypic datapreservationprocess optimizationprogramsprospectiverecruitreference genomeresearch clinical testingstem cell biologysuccesstechnology developmenttooltraining opportunitytranscriptomicsvariant detection
项目摘要
PROJECT SUMMARY
The Center for Undiagnosed Diseases at Stanford, a member site of the Undiagnosed Diseases Network, works to improve the lives of patients with undiagnosed and rare diseases and their families. The Center is focused on the efficient and sustainable implementation of cutting-edge methods for diagnosis. We pioneer the use of new molecular diagnostics and analytic strategies to investigate the most challenging cases. In parallel with pursuing diagnostic advances, we seek to more deeply understand the needs and experience of the undiagnosed patient community to inform the implementation of best practices concerning participant experience and the inclusion of historically underserved populations. The impacts of underinsurance and reduced access to subspecialty care and advanced diagnostics fall disproportionately on underserved populations, making it critical to undertake outreach in rare disease studies. The Center for Undiagnosed Diseases (CUD) at Stanford will continue our efforts toward sustainability, refinement of methods, and integration with clinical practice. Here, we propose a program of study that will (1) facilitate accurate diagnosis of patients with undiagnosed diseases, with emphasis on those without or with limited insurance, economic or language barriers; (2) use novel approaches in data analysis and integration of different ‘omes to improve diagnostic rates; and (3) enhance our understanding of the impact of diversity on the diagnostic process. In Aim 1, we focus on enhancing the recruitment of diverse participants we propose to enroll and evaluate a new cohort of patients. This will include phenotypic assessment and biosample collection to facilitate genomic, multi-omic, and cellular disease evaluation. We are expanding our local patient advocacy partnerships, including a local UDN PEER group. In Aim 2, we advance methods and technologies to enhance diagnostic yield that have not yet crossed the translational divide. We leverage transcriptomics, metabolomics, long read sequencing, and immunomics to uncover diagnoses and mechanisms in undiagnosed participants. We apply novel computational approaches for systematic integration of multiomic and phenotypic data with the entire medical literature to improve diagnostic yield. In Aim 3, we focus on sustainability by promoting regional partnerships to promote the participation of historically underserved populations in the study. This work will encompass expanded outreach and education. We additionally will systematically investigate participant experience encompassing patient-reported outcomes to best understand the value of the Network to the patient community. This work will inform our practices and contribute to the evidence base necessary to support continued and expanded stakeholder investment in the UDN.
项目概要
斯坦福大学未确诊疾病中心是未确诊疾病网络的成员网站,致力于改善患有未确诊疾病和罕见疾病的患者及其家人的生活。该中心致力于高效、可持续地实施尖端诊断方法。我们率先使用新的分子诊断和分析策略来调查最具挑战性的病例。在追求诊断进展的同时,我们寻求更深入地了解未确诊患者社区的需求和经验,以便为实施有关参与者体验和纳入历史上服务不足的人群的最佳实践提供信息。保险不足以及获得专科护理和高级诊断的机会减少对服务不足的人群造成了不成比例的影响,因此开展罕见病研究的推广至关重要。斯坦福大学未确诊疾病中心 (CUD) 将继续努力实现可持续性、改进方法以及与临床实践的结合。在这里,我们提出了一项研究计划,该计划将(1)促进对未确诊疾病患者的准确诊断,重点关注那些没有或有限保险、经济或语言障碍的患者; (2) 使用新方法进行数据分析和不同组的整合,以提高诊断率; (3) 增强我们对多样性对诊断过程影响的理解。在目标 1 中,我们专注于加强多元化参与者的招募,我们建议招募和评估新的患者群体。这将包括表型评估和生物样本收集,以促进基因组、多组学和细胞疾病评估。我们正在扩大我们当地的患者倡导合作伙伴关系,包括当地的 UDN PEER 团体。在目标 2 中,我们推进方法和技术来提高尚未跨越转化鸿沟的诊断率。我们利用转录组学、代谢组学、长读测序和免疫组学来揭示未确诊参与者的诊断和机制。我们应用新颖的计算方法将多组学和表型数据与整个医学文献系统集成,以提高诊断率。在目标 3 中,我们通过促进区域伙伴关系来关注可持续性,以促进历史上服务不足的人群参与研究。这项工作将包括扩大外展和教育。此外,我们还将系统地调查参与者的体验,包括患者报告的结果,以更好地了解网络对患者社区的价值。这项工作将为我们的实践提供信息,并为支持利益相关者对 UDN 的持续和扩大投资提供必要的证据基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Bernstein其他文献
Jonathan Bernstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Bernstein', 18)}}的其他基金
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 59.63万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 59.63万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 59.63万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 59.63万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 59.63万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 59.63万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 59.63万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 59.63万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 59.63万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 59.63万 - 项目类别:
Standard Grant














{{item.name}}会员




