Elucidating the Mechanistic Details of the Grp94 Molecular Chaperone through an Integrated Computational and Experimental Approach

通过综合计算和实验方法阐明 Grp94 分子伴侣的机制细节

基本信息

  • 批准号:
    10673734
  • 负责人:
  • 金额:
    $ 34.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Chaperone proteins are critical for cell survival and provide pathways for correct protein folding within the cell. Our research focuses on ATP-dependent chaperones in the endoplasmic reticulum, specifically Grp94. Grp94 belongs to the highly conserved Hsp90 superfamily, and like its cytosolic and mitochondrial paralogs, it folds and activates specific client proteins. Grp94 is of fundamental interest because it has limited mechanistic information compared to other paralogs. Grp94 is also unique because it has several observed structural and functional differences from paralogs that make it a promising drug target. Despite the importance of Grp94 chaperoning in protein homeostasis, the fundamental details of its chaperone cycle are not well characterized. Grp94 is of practical interest since aberrant protein folding in the endoplasmic reticulum results in medical issues such as type 2 diabetes, cancer, hepatitis B & C, and neurodegenerative and cardiovascular diseases. Understanding Grp94’s structure and function will provide a foundation for understanding how diseases caused by misfolded ER proteins can be treated and prevented. This fundamental knowledge of Grp94 mechanisms can aid in rational drug design. Current strategies involve ATP-competitive inhibitors that target all Hsp90 paralogs and inhibit both productive and unproductive chaperone activity, which results in toxicity. Novel therapeutic strategies include inhibiting chaperoning of toxic proteins while retaining chaperoning of non-toxic proteins and targeting specific Hsp90 paralogs; however, mechanistic information is required to move the field in this direction. Therefore, the studies of this chaperone mechanism will be of immense practical and economical value in the development of disease therapies. Understanding the conformational changes involved in the chaperone cycle is fundamentally important for identifying points of intervention. Understanding how client proteins and other chaperones structurally and functionally interact is fundamentally important for designing competitive modulators of Grp94. My lab will develop novel techniques for functional and structural studies of Grp94. We will tightly couple experimental and computational studies, which is a powerful combination of tools that will enable us to elucidate molecular details that wouldn’t be possible to obtain with either method individually. Using this approach, we will answer the following pertinent biological questions: (1) What are the preferred conformational states of Grp94 and which conformations co-exist in equilibrium? (2) How do cellular conditions and interactors influence Grp94’s conformational sampling? (3) What type of chaperone activity does Grp94 demonstrate and what are the requirements? (4) Where do client proteins interact on Grp94? (5) Are ATP hydrolysis events in the Grp94 dimer symmetric or asymmetric? The successful completion of these studies is expected to have an important impact in deconvoluting the Grp94 chaperone mechanism, the structural changes involved, and the details of substrate protein interactions and processing. This information will facilitate in finding new and novel points of intervention to ameliorate disease.
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea N Kravats其他文献

Andrea N Kravats的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
  • 批准号:
    2419343
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
  • 批准号:
    2401507
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
  • 批准号:
    2334679
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.38万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了