Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
基本信息
- 批准号:10673595
- 负责人:
- 金额:$ 60.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAneurysmBehaviorBiological AssayBiophysical ProcessBiophysicsBloodBlood VesselsBlood flowCellsChronicCirculationClinicClinicalClinical ManagementCommunitiesDevelopmentEndotheliumFiberFunctional disorderFundingGrowthHematocrit procedureHemoglobinHeterogeneityImageIndividualInjuryKineticsLabelLinkLiquid substanceMeasurementMicroscopyModelingMolecularOxygenPathologyPatientsPhysiologicalPolymersPopulationPopulation HeterogeneityPropertyResolutionRoleSickle Cell AnemiaSickle HemoglobinStrokeStructureSystemTechnologyTestingTherapeutic InterventionTransfusionTranslatingWhole BloodWorkacute chest syndromeblood rheologygene therapyhemoglobin polymerhydroxyureainsightmechanical propertiesmulti-scale modelingnovel therapeuticspolymerizationself assemblyshear stresssicklingspatiotemporalsubmicrontherapeutic developmenttoolviscoelasticity
项目摘要
PROJECT SUMMARY
In this renewal, we seek to understand the origin of heterogeneity in sickle cell disease (SCD), which is present
at every scale from molecules to the clinic, and is the major impediment to clinical management and the
development of new therapies. Moreover, therapy often increases heterogeneity, with some patients responding
strongly to therapy and others unresponsive. Our central hypothesis is that heterogeneity originates with
intracellular kinetics of sickle hemoglobin (HbS) self-assembly that translates into heterogeneous populations of
RBCs, which drive strong non-Newtonian fluid behavior in whole blood and alterations in the systemic circulation
that precipitate pathologies such as endothelial injury, vaso-occlusion, aneurysm, and stroke. Thus, the ability to
guide therapeutic intervention and to develop new therapies is ultimately hindered by our limited understanding
of heterogeneity in the context of multiscale biophysical processes in SCD pathophysiology. In this work, we will
develop a biophysical framework for SCD pathophysiology that spans from molecules to the systemic circulation,
that is experimentally validated at every scale, and that allows us to predict the effects of multiscale
heterogeneity. Specifically, we will: (1) Develop a quantitative framework for HbS polymerization that
accurately predicts the kinetics of self-assembly; (2) Define the connection between the distribution of
HbS polymer and mechanical properties among a population of RBCs; (3) Understand how cellular
heterogeneity drives non-Newtonian blood rheology and altered flow in the systemic circulation. The
work in this renewal builds on key conceptual advances made during our last 3 years of funding: HbS self-
assembly kinetics have previously been underestimated by at least an order of magnitude; HbS polymer is
heterogeneously distributed in RBCs at finite oxygen tension; velocity profiles in sickle blood demonstrate strong
non-Newtonian effects; blood flow in SCD patients is altered throughout the circulation with aberrantly large wall
shear stress relative to healthy blood. This work also leverages a unique and enabling set of tools that we have
developed during the last 3 years of funding: the highest spatiotemporal resolution measurements of single HbS
fiber assembly to-date; the first platform capable of quantifying HbS polymer in large populations of single RBCs
under well-defined oxygen tension; a platform capable of quantifying viscoelastic properties of large populations
of RBCs under well-defined oxygen tension; the ability to quantify submicron velocity fields in flowing blood at
physiologic hematocrit; a platform to quantify sickle blood flow within physiologic oxygen gradients. Building on
these tools and insights, this renewal work will develop and validate a multiscale model describing how
heterogeneity propagates from the molecular to cellular to system levels, and we will develop experimental tools
that can be used for clinical management and therapeutic development.
项目摘要
在这次更新中,我们试图了解镰状细胞病(SCD)异质性的起源,
在从分子到临床的每一个尺度上,它是临床管理和治疗的主要障碍。
开发新的疗法。此外,治疗往往会增加异质性,一些患者会对
对治疗反应强烈而其他人则反应迟钝。我们的中心假设是异质性起源于
镰状血红蛋白(HbS)自组装的细胞内动力学,转化为异质群体,
红细胞,其驱动全血中的强非牛顿流体行为和体循环的改变
其促成病理学,例如内皮损伤、血管闭塞、动脉瘤和中风。因此,
指导治疗干预和开发新疗法最终受到我们有限的理解的阻碍
SCD病理生理学中多尺度生物物理过程背景下的异质性。在这项工作中,我们将
为SCD病理生理学建立一个生物物理学框架,从分子到体循环,
这在每个尺度上都得到了实验验证,这使我们能够预测多尺度的影响
异质性具体而言,我们将:(1)开发HbS聚合的定量框架,
准确地预测自组装的动力学;(2)定义分布之间的联系,
红细胞群体中HbS聚合物和机械特性;(3)了解细胞如何
异质性驱动非牛顿血液流变学和体循环中的改变的流动。的
这项更新工作建立在我们过去3年资助期间取得的关键概念进展基础上:HbS自我-
组装动力学以前被低估了至少一个数量级; HbS聚合物是
有限氧张力下红细胞中的不均匀分布;镰状血中的速度曲线显示出强的
非牛顿效应; SCD患者的血流在整个循环中发生改变,壁异常大
相对于健康血液的剪切应力。这项工作还利用了我们拥有的一套独特的工具,
在过去3年的资金开发:最高的时空分辨率测量的单一HbS
迄今为止的纤维组装;第一个能够定量大量单个RBC中HbS聚合物的平台
在定义明确的氧张力下;一个能够量化大群体粘弹性的平台
红细胞在明确定义的氧张力下的速度场;在流动的血液中定量亚微米速度场的能力,
生理红细胞压积;一个在生理氧梯度内量化镰状血流的平台。基础上
这些工具和见解,这项更新工作将开发和验证一个多尺度模型,描述如何
异质性从分子水平传播到细胞水平再到系统水平,我们将开发实验工具
可用于临床管理和治疗开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kevin Wood其他文献
David Kevin Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kevin Wood', 18)}}的其他基金
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10756268 - 财政年份:2017
- 资助金额:
$ 60.62万 - 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10209656 - 财政年份:2017
- 资助金额:
$ 60.62万 - 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
- 批准号:
10382453 - 财政年份:2017
- 资助金额:
$ 60.62万 - 项目类别:
A microfluidic platform to study sickle blood rheology
研究镰状血液流变学的微流控平台
- 批准号:
9684422 - 财政年份:2017
- 资助金额:
$ 60.62万 - 项目类别:
Dissecting the origins of fetal hemoglobin modulation of sickle cell vaso-occlusion
剖析胎儿血红蛋白调节镰状细胞血管闭塞的起源
- 批准号:
9258476 - 财政年份:2016
- 资助金额:
$ 60.62万 - 项目类别:
Carcinoma Cell Hyaluronan as a Therapeutic Target in Metastasis
癌细胞透明质酸作为转移治疗靶点
- 批准号:
9250092 - 财政年份:2016
- 资助金额:
$ 60.62万 - 项目类别:
A microfluidic platform to study sickle blood rheology
研究镰状血液流变学的微流控平台
- 批准号:
9324460 - 财政年份:2016
- 资助金额:
$ 60.62万 - 项目类别:
Carcinoma Cell Hyaluronan as a Therapeutic Target in Metastasis
癌细胞透明质酸作为转移治疗靶点
- 批准号:
9100026 - 财政年份:2016
- 资助金额:
$ 60.62万 - 项目类别:
相似海外基金
Establishment of human abdominal aortic aneurysm wall strength prediction model using Ex Vivo Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging
利用Ex Vivo超顺磁性氧化铁建立人体腹主动脉瘤壁强度预测模型
- 批准号:
23K08226 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Vascular Smooth Muscle Protein Quality Control and Aortic Aneurysm Formation
血管平滑肌蛋白质量控制与主动脉瘤形成
- 批准号:
10714562 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Role of mechanical heterogeneity in cerebral aneurysm growth and rupture
机械异质性在脑动脉瘤生长和破裂中的作用
- 批准号:
10585539 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Study on development of prophylaxis for recanalization after coil embolization of cerebral aneurysm and elucidation of its mechanisms
脑动脉瘤弹簧圈栓塞术后再通预防措施的研究进展及机制阐明
- 批准号:
23K08512 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Roles of aging and cellular senescence in the development of intracranial aneurysm rupture
衰老和细胞衰老在颅内动脉瘤破裂发展中的作用
- 批准号:
10680060 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Role of Selective Autophagy of Focal Adhesion in Intracranial Aneurysm
局部粘连选择性自噬在颅内动脉瘤中的作用
- 批准号:
10586692 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Vascular smooth muscle cell ferroptosis and abdominal aortic aneurysm
血管平滑肌细胞铁死亡与腹主动脉瘤
- 批准号:
10733477 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别:
Extracellular Vesicle Delivery System for Treatment of Abdominal Aortic Aneurysm
细胞外囊泡递送系统治疗腹主动脉瘤
- 批准号:
10751123 - 财政年份:2023
- 资助金额:
$ 60.62万 - 项目类别: