Carcinoma Cell Hyaluronan as a Therapeutic Target in Metastasis

癌细胞透明质酸作为转移治疗靶点

基本信息

  • 批准号:
    9250092
  • 负责人:
  • 金额:
    $ 16.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Metastasis, which represents the major cause of frustration and failure in therapy, remains the least understood stage of cancer progression. One of the difficulties in studying later stages of metastasis is the lack of appropriate models of the complex metastatic process. To overcome this challenge, we have developed a microfluidic system that recapitulates critical stages of metastasis while allowing for real time stimulation of cell phenotype and real time imaging of the metastatic process. The microfluidic model recapitulates critical aspects of the ectopic site, including a vascular compartment with physiologic flow and functional endothelium and a solid ECM-rich tissue compartment. In this work, we will use this platform to elucidate the importance of HA-dependent mechanisms in tumor cells as drivers of metastasis and ultimately to develop the microfluidic model system as a screening tool for identifying novel anti-metastatic reagents. Our working hypothesis is that HA synthesis and pericellular coat formation by metastatic carcinoma cells confers a `stromal independent' phenotype to enhance metastasis formation. Mechanistically the prediction is that this facilitates survival in the circulation and promotes carcinoma cell adhesion to endothelial cells, subsequent extravasation, and invasion and growth within the parenchyma of tissues harboring metastatic lesions. Within this work, we will specifically: (1) optimize our microfluidic platform to quantify the metastatic potential of breast cancer cells; (2) quantify the effects of altering HA synthesis by metastatic carcinoma cells on tumor cells arrest, extravasation and growth both in vitro and in vivo. While HA synthesis by carcinomas has been linked with malignant progression, we hypothesize that it is the formation of a pericellular rich matrix that positions plasma membrane receptors, organizes the cytoskeleton and functions to maintain survival. Preliminary data support this hypothesis and this will be further tested by limiting HA synthesis and artificially restoring the pericellular matrix, using lipid coupled HA that will intercalate into the plasma membrane. We will evaluate key oncogenic signaling and survival pathways in cells (both suspended and adherent) that have, or do not have, an endogenous or artificial HA rich pericellular matrix. The prediction is that cells with a pericellular HA matrix ill in fact maintain activated oncogenic pathways, independent of adhesion, that will be inhibited by preventing the formation of a pericellular HA rich matrix. Beyond this specific mechanism of metastasis, this model should help focus on critical events in metastasis and ultimately speed the discovery of new therapeutic targets to block rate limiting steps in this process.
 描述(由申请人提供):转移是治疗失败和失败的主要原因,仍然是癌症进展中最不了解的阶段。研究晚期转移的困难之一是缺乏合适的转移模型。 复杂的转移过程为了克服这一挑战,我们已经开发了一种微流体系统,该系统重现了转移的关键阶段,同时允许真实的时间刺激肿瘤细胞。 细胞表型和转移过程的真实的实时成像。微流体模型概括了异位部位的关键方面,包括具有生理流动和功能性内皮的血管隔室和固体ECM丰富的组织隔室。在这项工作中,我们将使用这个平台来阐明HA依赖性机制在肿瘤细胞中作为转移驱动因素的重要性,并最终开发微流体模型系统作为识别新型抗转移试剂的筛选工具。我们的工作假设是,HA合成和转移癌细胞形成的细胞外被赋予一个“基质独立”的表型,以增强转移形成。从机制上预测,这有利于循环中的存活,并促进癌细胞粘附于内皮细胞,随后外渗,以及在携带转移性病变的组织的实质内侵袭和生长。在这项工作中,我们将具体:(1)优化我们的微流体 平台来量化乳腺癌细胞的转移潜力;(2)量化改变转移性癌细胞的HA合成对体外和体内肿瘤细胞停滞、外渗和生长的影响。虽然HA合成癌已与恶性进展,我们假设,这是一个细胞周丰富的基质,定位质膜受体,组织细胞骨架和功能,以维持生存的形成。初步数据支持这一假设,这将通过限制HA合成和人工恢复细胞周围基质,使用脂质偶联的HA,将嵌入质膜进一步测试。我们将评估具有或不具有内源性或人工富含HA的细胞周基质的细胞(悬浮和粘附)中的关键致癌信号传导和生存途径。预测是,具有细胞周HA基质的细胞事实上将维持激活的致癌途径,而不依赖于粘附,这将通过防止细胞周富含HA的基质的形成而被抑制。除了这种特定的转移机制,这种模型应该有助于关注转移中的关键事件,并最终加速发现新的治疗靶点,以阻断这一过程中的限速步骤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Kevin Wood其他文献

David Kevin Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Kevin Wood', 18)}}的其他基金

Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
  • 批准号:
    10756268
  • 财政年份:
    2017
  • 资助金额:
    $ 16.27万
  • 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
  • 批准号:
    10673595
  • 财政年份:
    2017
  • 资助金额:
    $ 16.27万
  • 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
  • 批准号:
    10209656
  • 财政年份:
    2017
  • 资助金额:
    $ 16.27万
  • 项目类别:
Developing a multiscale understanding of biophysical processes in sickle cell disease
建立对镰状细胞病生物物理过程的多尺度理解
  • 批准号:
    10382453
  • 财政年份:
    2017
  • 资助金额:
    $ 16.27万
  • 项目类别:
A microfluidic platform to study sickle blood rheology
研究镰状血液流变学的微流控平台
  • 批准号:
    9684422
  • 财政年份:
    2017
  • 资助金额:
    $ 16.27万
  • 项目类别:
Dissecting the origins of fetal hemoglobin modulation of sickle cell vaso-occlusion
剖析胎儿血红蛋白调节镰状细胞血管闭塞的起源
  • 批准号:
    9258476
  • 财政年份:
    2016
  • 资助金额:
    $ 16.27万
  • 项目类别:
A microfluidic platform to study sickle blood rheology
研究镰状血液流变学的微流控平台
  • 批准号:
    9324460
  • 财政年份:
    2016
  • 资助金额:
    $ 16.27万
  • 项目类别:
Carcinoma Cell Hyaluronan as a Therapeutic Target in Metastasis
癌细胞透明质酸作为转移治疗靶点
  • 批准号:
    9100026
  • 财政年份:
    2016
  • 资助金额:
    $ 16.27万
  • 项目类别:
Self-Organized Tissue Microvasculature
自组织组织微脉管系统
  • 批准号:
    7614893
  • 财政年份:
    2009
  • 资助金额:
    $ 16.27万
  • 项目类别:
Self-Organized Tissue Microvasculature
自组织组织微脉管系统
  • 批准号:
    7787518
  • 财政年份:
    2009
  • 资助金额:
    $ 16.27万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 16.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了